An inequality for complex, symmetric matrices with zero diagonal

Oscar A. Nagel, and Guido A. Raggio
FaMAF-Universidad Nacional de Córdoba, Córdoba, Argentina

Abstract
If the complex symmetric square matrix V has zero diagonal then
$$2 \| |V| \| \leq \text{tr}(|V|).$$

2000 Mathematics Subject Classification: 15A45

The purpose of this note is the proof of the following

Theorem For an arbitrary $n \times n$ complex matrix $V = (V_{jk})$ which is symmetric (that is $V_{jk} = V_{kj}$) and has zero diagonal elements, one has
$$2 \| |V| \| \leq \text{tr}(|V|).$$

Here, $|V|$ denotes the modulus of V (the positive semidefinite square-root of V^*V), $\| \cdot \|$ is the spectral-norm, and tr denotes the trace.

The inequality emerged from our analysis of [1] where it is implicit for $n = 4$. This inequality will play an important role in our ongoing study of quantum-state entanglement. Our proof uses the Takagi diagonalization of symmetric matrices ([2]; p. 204-205), and the following elementary result:

Lemma Consider $n \geq 1$ non-negative real numbers $c_1 \geq c_2 \geq \cdots \geq c_n \geq 0$. Then
$$2c_1 \leq \sum_{j=1}^{n} c_j$$
if and only if there are n real numbers θ_j ($j = 1, 2, \cdots, n$) such that
$$\sum_{j=1}^{n} e^{\imath \theta_j} c_j = 0.$$
Proof: For \(n = 1, 0 \leq 2c_1 \leq c_1 \) iff \(c_1 = 0 \). We assume henceforth that \(n \geq 2 \). If \(\sum_{j=1}^{n} e^{i\theta_j} c_j = 0 \) then by the triangle inequality, \(c_1 = |e^{i\theta_1} c_1| = | - \sum_{j=2}^{n} e^{i\theta_j} c_j | \leq \sum_{j=2}^{n} c_j \), so the condition is sufficient.

The necessity is proved by considering first the cases \(n = 2 \) and \(n = 3 \) (which cannot be reduced to \(n = 2 \)) and then using induction on \(n \geq 3 \). For \(n = 2 \), the hypothesis and the inequality imply \(c_1 = c_2 \) so that \(\theta_1 = 0 \) and \(\theta_2 = \pi \) will do.

For \(n = 3 \), we show that there is \(\alpha \) and \(\beta \) such that \(c_1 = e^{i\alpha} c_2 + e^{i\beta} c_3 \) so that \(\theta_1 = 0, \theta_2 = \alpha + \pi \) and \(\theta_3 = \beta + \pi \) will do. When \(c_3 = 0 \) we have the case \(n = 2 \). Otherwise, \(c_1 \geq c_2 \geq c_3 > 0 \) and the numbers

\[
\frac{c_1^2 + c_2^2 - c_3^2}{2c_1c_2}, \quad \frac{c_1^2 + c_3^2 - c_2^2}{2c_1c_3}
\]

are both non-negative and not above 1. A straightforward direct calculation shows that

\[
\alpha = \pm \arccos \left(\frac{c_1^2 + c_2^2 - c_3^2}{2c_1c_2} \right), \quad \beta = \mp \arccos \left(\frac{c_1^2 + c_3^2 - c_2^2}{2c_1c_3} \right),
\]

give two possible choices of the phases.

We now proceed with induction. Given \(c_1 \geq c_2 \cdots \geq c_n \geq c_{n+1} \), consider \(b_1 = c_1 - c_{n+1} \) which is non-negative. If \(b_1 \geq c_2 \), then by the induction hypothesis, there are \(\gamma_1, \cdots, \gamma_n \) such that \(e^{i\gamma_j} b_1 + \sum_{j=2}^{n} e^{i\gamma_j} c_j = 0 \); \(\theta_j = \gamma_j \) for \(j \neq n + 1 \) and \(\theta_{n+1} = \gamma_1 + \pi \) does the job. If \(b_1 < c_2 \), then consider \(a_1 = c_2 \) and let \(a_j \) for \(j = 2, \cdots, n \) be a renumeration of \(\{b_1, c_3, \cdots, c_n\} \) such that \(a_2 \geq a_3 \geq \cdots \geq a_n \). Then, \(a_k = c_1 - c_{n+1} = b_1 \) for some \(2 \leq k \leq n \). We have \(a_1 + c_{n+1} = c_2 + c_{n+1} \leq c_1 + c_n \) or, equivalently, \(a_1 \leq b_1 + c_n \), so that \(a_1 \leq \sum_{j=2}^{n} a_j \).

The induction hypothesis applied to the \(a \)'s implies the existence of real numbers \(\gamma_j \ (j = 1, 2, \cdots, n) \) such that \(\sum_{j=1}^{n} e^{i\gamma_j} a_j = 0 \). Then \(\theta_1 = \gamma_k, \theta_{n+1} = \gamma_k + \pi, \) and \(\theta_j = \gamma_j \) for \(j \neq k \), does the job.

We state two immediate corollaries of the Lemma.

Proposition 1 If \(n \geq 1 \) and \(A \) is an \(n \times n \) positive semidefinite complex matrix with repeated eigenvalues \(a_1, a_2, \cdots, a_n \) then \(2 \| A \| \leq \text{tr}(A) \) if and only if there are \(n \) real numbers \(\theta_j \ (j = 1, 2, \cdots, n) \) such that \(\sum_{j=1}^{n} e^{i\theta_j} a_j = 0 \).

Proposition 2 If \(n \geq 1 \) and \(z_1, z_2, \cdots, z_n \in \mathbb{C} \) and \(\sum_{j=1}^{n} z_j = 0 \) then \(2 \max_j |z_j| \leq \sum_{j=1}^{n} |z_j| \).

Another immediate consequence is

Proposition 3 If \(V \) is an hermitian \(n \times n \) complex matrix with \(\text{tr}(V) = 0 \), then \(2 \| V \| \leq \text{tr}(|V|) \).
Proof: Enumerate the eigenvalues of V as v_1, \ldots, v_n according to their multiplicities; then $0 = tr(V) = \sum_{j=1}^{n} v_j$ implies $\sum_{j=1}^{n} e^{\theta_j} |v_j| = 0$ where $\theta_j = 0$ if $v_j > 0$ and $\theta_j = \pi$ for $v_j < 0$. Using the Lemma, $2 \parallel V \parallel = 2 \parallel |V| \parallel = 2 \max_j |v_j| \leq \sum_{j=1}^{n} |v_j| = tr(|V|)$. This can be proved without invoking the Lemma quite simply: $V = V_+ - V_-$ and $tr(V_+) = tr(V_-) \geq \parallel V \parallel$ so that $tr(|V|) = tr(V_+) + tr(V_-) \geq 2 \parallel V \parallel$.

We now proceed with the proof of the theorem. For $n = 1$ the claim is trivially true, so we assume $n \geq 2$. If V is symmetric, that is $V = V^T$, where T denotes transposition, the Takagi diagonalization (see [2], p. 204-205) insures the existence of a unitary matrix U such that $U^TVU = D$ with D diagonal, that is $D_{jk} = \delta_{jk}d_j$ (the fact that $d_j \geq 0$ does not simplify the argument below). Since $U^T(U^T)^* = (U^*)U^T$, it follows that U^T is unitary and thus $V = (U^*)^*DU^*$. Then, $|V|^2 = V^*V = UD^*U^T(U^T)^*DU^* = U|D|^2U^*$, and thus $|V| = U|D|U^*$. In particular,

$$0 = \sum_{j=1}^{n} (U^T)_{jk}D_{km}U_{mj} = \sum_{m=1}^{n} d_mU_{mj}^2, \quad j = 1, 2, \ldots, n.$$

By Proposition 2,

$$2 \max_m \{ |d_m| \ | U_{jm} |^2 \} \leq \sum_{m=1}^{n} |d_m| \ | U_{jm} |^2, \quad j = 1, 2, \ldots, n,$$

Since U and thus U^* is unitary, $\sum_{j=1}^{n} | U_{jm} |^2 = 1$ for $m = 1, 2, \ldots, n$. But then,

$$2 \max_m |d_m| = 2 \max_m \left[\sum_{j=1}^{n} | U_{jm} |^2 | d_m | \right] \leq 2 \max_m \{ | U_{jm} |^2 | d_m | \}
\leq \sum_{j=1}^{n} \sum_{m=1}^{n} |d_m| \ | U_{jm} |^2 = \sum_{m=1}^{n} |d_m|;$$

which is exactly $2 \parallel |D| \parallel \leq tr(|D|)$ and the claimed inequality follows from Eq. (1).

The inequality is saturated for all symmetric matrices with zero diagonal and at most two non-zero entries in the upper off-diagonal triangle. We remark that if V is not hermitian but symmetric the condition of zero diagonal on V in the theorem cannot be relaxed to $tr(V) = 0$ (cf. Proposition 3). Consider

$$V = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix},$$

3
then 2 and 0 are the eigenvalues of $|V|$ so that $||V|| = tr(|V|)$.

G.A.R. acknowledges fruitful discussions with Jorge Antezana and Pedro Massey.

References
