On pointed Hopf Algebras associated with unmixed conjugacy classes in s_m

N. Andruskiewitsch, F. Fantino

Editores: Jorge R. Lauret – Elvio A. Pilotta

CIUDAD UNIVERSITARIA – 5000 CÓRDOBA
REPÚBLICA ARGENTINA
ON POINTED HOPF ALGEBRAS ASSOCIATED WITH UNMIXED CONJUGACY CLASSES IN S_m

NICOLÁS ANDRUSKIEWITCH AND FERNANDO FANTINO

Abstract. Let $\pi \in S_m$ be a product of disjoint cycles of the same length, C the conjugacy class of π and ρ an irreducible representation of the centralizer of π. We prove that either the Nichols algebra $B(C, \rho)$ is infinite-dimensional, or the braiding of the Yetter-Drinfeld module is negative.

Contents

Introduction 1
1. Preliminaries 3
 1.1. Yetter-Drinfeld modules over a finite group 3
 1.2. On Nichols algebras 4
 1.3. Abelian subspaces of a braided vector space 4
2. On Nichols algebras over S_m 5
 2.1. Notation on the groups S_m 5
 2.2. Nichols algebras corresponding to even cycles 6
 2.3. Nichols algebras of orbits with n transpositions 6
 2.4. Nichols algebras corresponding to even unmixed permutations 21
References 32

Introduction

Hopf algebras have important applications in mathematics and mathematical physics. Indeed, Hopf algebras give rise to finite tensor categories in the sense of [ENO, EO] through their categories of representations. In this way, for instance, semisimple Hopf algebras are present in a fundamental way in rational conformal field theories. Also, non-semisimple Hopf algebras are related to logarithmic conformal field theories [Ga]. It is natural to expect that classification results on finite-dimensional Hopf algebras would

Date: August 28, 2008.

2000 Mathematics Subject Classification. 16W30; 17B37.

This work was partially supported by CONICET, ANPCyT and Secyt (UNC).
have a significant impact in those areas. Needless to say, classification efforts often come out in discovery of new examples.

This article, in the line of [AZ], is a contribution to the classification of finite-dimensional complex pointed Hopf algebras \(H \) with \(G(H) \) non-abelian, in the framework of the Lifting Method [AS2]. Let \(G \) be a finite group. An important stage in the proposed approach to classification of finite-dimensional complex pointed Hopf algebras \(H \) with \(G(H) = G \) is the determination of all Yetter-Drinfeld modules \(V \) over the group algebra of \(G \) such that the Nichols algebra \(\mathfrak{B}(V) \) is finite-dimensional. When the finite group \(G \) is abelian, this amounts to the study of Nichols algebras of diagonal type. In this context, substantial results were reached in [H4], see also [AS1, H1, H2, H3].

For a general finite group \(G \), irreducible Yetter-Drinfeld modules (up to isomorphisms) over \(C \) are parametrized by pairs \((C, \rho)\) where \(C \) is a conjugacy class of \(G \) and \(\rho \) is an irreducible representation of the centralizer \(G^s \) of a fixed \(s \in C \). Say \(M(C, \rho) \) is the irreducible Yetter-Drinfeld module corresponding to \((C, \rho)\) and \(\mathfrak{B}(C, \rho) \) is its Nichols algebra. As in [AZ], we use the following strategy.

Strategy. Given \((C, \rho)\), find a braided subspace \(W \) of \(M(C, \rho) \) of diagonal type. Check if the dimension of the Nichols algebra \(\mathfrak{B}(C, \rho) \) is infinite using the above mentioned results. If so, then necessarily \(\dim(\mathfrak{B}(C, \rho)) = \infty \).

Note that this strategy only involves the determination of a braided subspace \(W \) of \(M(C, \rho) \) of diagonal type. This is an elementary problem of group theory and its solution does not require any knowledge of pointed Hopf algebras or Nichols algebras.

In this paper, we deal with the groups \(G = S_m \). The orbit of \(\pi \in S_m \) is determined by the lengths of the disjoint cycles in the decomposition of \(\pi \). We call \(\pi \) unmixed if all those lengths are equal, and mixed otherwise.

The main results in this paper are summarized in the following statement, see below for the unexplained notations.

Theorem 1. Let \(\pi \in S_{kn} \) be unmixed, say of type \((k^n)\), and \(\rho \in \hat{S}_{\pi} \).

(A) If \(k \) is odd, then \(\dim(\mathfrak{B}(C, \rho)) = \infty \).

(B) Assume that \(k = 2 \).

(i) If \(n \) is even, then \(\dim(\mathfrak{B}(C, \rho)) = \infty \).

(ii) Assume that \(n \) is odd, \(n > 1 \). If \(\rho = \chi(n) \otimes \epsilon \) or \(\chi(n) \otimes \text{sgn} \), then the braiding is negative. Otherwise, \(\dim(\mathfrak{B}(C, \rho)) = \infty \).

(C) Assume that \(k = 2r \), with \(r > 1 \).

(i) If \(n = 1 \), then \(\dim(\mathfrak{B}(C, \rho)) = \infty \) if \(\rho = \chi_\omega \), with \(\omega \neq -1 \), and the braiding is negative if \(\rho = \chi_\omega \), with \(\omega = -1 \).

(ii) Assume that \(n > 1 \). If \(\deg \rho > 1 \), or if \(\deg \rho = 1 \) and \(\rho(\pi) \neq -1 \), then \(\dim(\mathfrak{B}(C, \rho)) = \infty \). Assume that \(\deg \rho = 1 \) and \(\rho(\pi) = -1 \). If
\[\rho = \chi_{r, \ldots, r} \otimes \mu, \text{ with } r \text{ even or odd, or if } \rho = \chi_{c, \ldots, c} \otimes \mu, \text{ with } r \text{ even and } c = \frac{r}{2} \text{ or } \frac{3r}{2}, \text{ then the braiding is negative, where } \mu = \epsilon \text{ or } \text{sgn}; \]
otherwise, \(\dim \mathcal{B}(\mathcal{C}, \rho) = \infty. \)

Part (A) follows from [AZ], see Lemma 2.1; [AZ, Theor. 2.7], Propositions 2.4, 2.11 and Theorem 2.12 for part (B); and Proposition 2.2, Theorem 2.14, Proposition 2.15 and Theorem 2.16 for part (C). Briefly, for the braided vector spaces considered in this paper, either the Nichols algebra is infinite-dimensional or the braiding is negative. The notation in the Theorem can be found in the pages 5, 6, 6 and 21 for negative braiding, \(\chi_{(n)}, \chi_{(m)} \) and \(\chi_{r, \ldots, r} \), respectively.

We shall consider the mixed case in a subsequent publication; partial results follow from the unmixed case and [AZ, Prop. 2.6].

1. Preliminaries

Our main reference for the classification problem of pointed Hopf algebras is [AS2]. We denote by \(\hat{G} \) the set of isomorphism classes of irreducible representations of a finite group \(G \). Consequently, the group of characters of a finite abelian group \(\Gamma \) is denoted \(\hat{\Gamma} \). We shall often denote a representant of a class in \(\hat{G} \) with the same symbol as the class itself. If \(\rho \in \hat{G}, \deg \rho \) is the dimension of the vector space \(V \) affording \(\rho \). If \(V \) is a \(\Gamma \)-module then \(V^\chi \) is the isotypic component of type \(\chi \in \hat{\Gamma} \). We shall use the rack notation \(g \triangleright h = ghg^{-1}, \ g, h \in G \). A left comodule over the group algebra \(\mathbb{C}G \) is the same as a \(G \)-graded vector space: if \(M \) is a \(\mathbb{C}G \)-comodule, then \(M = \bigoplus_{h \in G} M_h \) where \(M_h = \{ m \in M : \delta(m) = h \otimes m \} \).

We denote by \(\mathbb{G}_n \) the group of \(n \)-th roots of 1 in \(\mathbb{C} \).

1.1. Yetter-Drinfeld modules over a finite group. Let \(G \) be a finite group. A Yetter-Drinfeld module over \(G \) is a left \(G \)-module and left \(\mathbb{C}G \)-comodule \(M \) satisfying the compatibility condition \(\delta(g.m) = ghg^{-1} \otimes g.m, \) for all \(m \in M_h, \ g, h \in G \). It is well-known that Yetter-Drinfeld modules over \(G \) are completely reducible, and that irreducible Yetter-Drinfeld modules over \(G \) are parameterized by pairs \((\mathcal{C}, \rho) \) where \(\mathcal{C} \) is a conjugacy class in \(G \) and \(\rho \) is an irreducible representation of the isotropy subgroup \(G^r \) of a fixed point \(s \in \mathcal{C} \) on a vector space \(V \). We denote the corresponding Yetter-Drinfeld module by \(M(\mathcal{C}, \rho) \); a precise description is as follows. Let \(t_1 = s, \ldots, t_M \) be a numeration of \(\mathcal{C} \) and let \(g_i \in G \) such that \(g_i \triangleright s = t_i \) for all \(1 \leq i \leq M \). Then \(M(\mathcal{C}, \rho) = \bigoplus_{1 \leq i \leq M} g_i \otimes V \). Let \(g_i.v := g_i \otimes v \in M(\mathcal{C}, \rho), \ 1 \leq i \leq M, \ v \in V \). If \(v \in V \) and \(1 \leq i \leq M, \) then the action of \(g \in G \) is given by \(g \cdot (g_i.v) = g_j(g \cdot v) \), where \(gg_i = g_jg_i \) for some \(1 \leq j \leq M \) and \(g \in G^r \), and the coaction is given by \(\delta(g_i.v) = t_i \otimes g_i.v \). The Yetter-Drinfeld module \(M(\mathcal{C}, \rho) \) is a braided vector space (see below) with braiding

\begin{equation}
\rho(g_i.v \otimes g_j.w) = t_i \cdot (g_j.w) \otimes g_i.v = g_h(\gamma \cdot w) \otimes g_i.v,
\end{equation}
for any $1 \leq i, j \leq M$, $v, w \in V$, where $t_i g_j = g_h \gamma$ for unique h, $1 \leq h \leq M$ and $\gamma \in G^s$. Since $s \in Z(G^s)$, the Schur Lemma implies that

$$\text{(2)} \quad s \text{ acts by a scalar } q_{ss} \text{ on } V.$$

Notice that $M(C, \rho)$ depends on the element s in C and ρ in \hat{G}^s. Let $s, \bar{s} \in C$ and let $g \in G$ such that $gsg^{-1} = \bar{s}$; thus $gG^sg^{-1} = G^\delta$. Let $\bar{\rho} \in \hat{G}^\delta$ the pullback of $\rho \in \hat{G}^s$ via conjugate by g. Then $M(C, \rho) = M(C, \bar{\rho})$; in particular

$$\text{(3)} \quad \text{the images of } \rho \text{ and } \bar{\rho} \text{ in } GL(V) \text{ coincide.}$$

1.2. On Nichols algebras. Let (V, c) be a braided vector space, i. e. V is a vector space and $c : V \otimes V \to V \otimes V$ is an automorphism satisfying the braid equation $(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$. Then $\mathcal{B}(V)$ denotes the Nichols algebra of V, see [AS2]. The Nichols algebra of a Yetter-Drinfeld module $M(C, \rho)$ will be denoted just by $\mathcal{B}(C, \rho)$.

Lemma 1.1. If W is a subspace of V such that $c(W \otimes W) = W \otimes W$ and $\dim \mathcal{B}(W) = \infty$, then $\dim \mathcal{B}(V) = \infty$. \hfill \Box

Indeed, $\mathcal{B}(W) \subset \mathcal{B}(V)$. A first application of the Lemma is when there exists $v \in V - 0$ such that $c(v \otimes v) = v \otimes v$; then $\dim \mathcal{B}(V) = \infty$. In particular, if $V = M(C, \rho)$ and $q_{ss} = 1$, see (2), then $\dim \mathcal{B}(C, \rho) = \infty$.

A braided vector space (V, c) is of diagonal type if there exists a basis v_1, \ldots, v_θ of V and non-zero scalars $q_{ij}, 1 \leq i, j \leq \theta$, such that $c(v_i \otimes v_j) = q_{ij}v_j \otimes v_i$, for all $1 \leq i, j \leq \theta$. A braided vector space (V, c) of diagonal type is of Cartan type if $q_{ii} \neq 1$ is a root of 1 for all $i, 1 \leq i \leq \theta$, and there exists $a_{ij} \in \mathbb{Z}$, $\text{ord } q_{ii} < a_{ij} \leq 0$ such that $q_{ij}q_{ji} = q_{ij}^{a_{ij}}$ for all $1 \leq i \neq j \leq \theta$. Set $a_{ii} = 2$ for all $1 \leq i \leq \theta$. Then $(a_{ij})_{1 \leq i, j \leq \theta}$ is a generalized Cartan matrix.

Theorem 1.2. ([H3, Th. 4], see also [AS1, Th. 1]). Let (V, c) be a braided vector space of Cartan type. Then $\dim \mathcal{B}(V) < \infty$ if and only if the Cartan matrix is of finite type. \hfill \Box

1.3. Abelian subspaces of a braided vector space. Our aim now is to describe a recipe for finding abelian subspaces W of diagonal type of a braided vector space $M(C, \rho)$.

Let (X, \triangleright) be a rack. Let $q : X \times X \to \mathbb{C}^\times$ be a rack 2-cocycle and let $(\mathbb{C}X, c_q)$ be the associated braided vector space, that is $\mathbb{C}X$ is a vector space with a basis e_x, $x \in X$, and $c_q(e_x \otimes e_y) = q_{xy}e_{xy} \otimes e_x$, for all $x, y \in X$. Let us say that a subrack T of X is abelian if $i \triangleright j = j$ for all $i, j \in T$. If T is an abelian subrack of X then $\mathbb{C}T$ is a braided vector subspace of $(\mathbb{C}X, c_q)$ of diagonal type.

Definition 1.3. We say that $(\mathbb{C}X, c_q)$ is weakly finite if $\dim \mathcal{B}(\mathbb{C}T) < \infty$ for any abelian subrack T of X.

4 ANDRUSKIEWITSC AND FANTINO
Our interest is to check when (CX,c_q) is not weakly finite, for then $\dim \B(CX) = \infty$.

We shall say that (CX,c_q) is negative if $q_{ii} = -1$ and $q_{ij}q_{ji} = 1$ for all $i,j \in T$ (hence $\B(CT)$ is an exterior algebra and $\dim \B(CT) = 2^{\text{card} T}$) and for any abelian subrack T of X. This is a very particular case, but we note that almost all known braided vector spaces with finite dimensional Nichols algebra that “do not come from the abelian case” are negative. See [Gü].

Let now G be a finite group, C a conjugacy class in G, $\rho \in \hat{G}^s$ with $s \in C$ fixed. As in subsection 1.1, we fix a numeration $t_1 = s, \ldots, t_M$ of C and $g_i \in G$ such that $g_i \triangleright s = t_i$ for all $1 \leq i \leq M$. Let $T = \{t_i : i \in I\}$ be an abelian subrack of C, $I \subset \{1,\ldots,M\}$. Let $i,j \in I$. Then the following are equivalent:

(i) $t_i \triangleright t_j = t_j$, that is, t_i and t_j commute.

(ii) $\gamma_{ij} := g_j^{-1}t_ig_j \in G^s$.

Let V be the vector space affording ρ. For every $v, w \in V$, we have that

$$c(g_i v \otimes g_j w) = g_j (\gamma_{ij} \cdot w) \otimes g_i v$$

(4)

Let v_1, \ldots, v_R be simultaneous eigenvectors of γ_{ij}, $i,j \in I$. Then

$$W = \mathbb{C} - \text{span of } g_i v_j, \quad i \in I, 1 \leq j \leq R,$$

is a braided subspace of diagonal type of dimension $\text{card} TR$. Note that R depends not only on T but also on the representation ρ; for instance if ρ is a character then $R = 1 = \dim V$, and $M(C, \rho)$ is of rack type.

Notice that the action of G on C (by conjugation) preserves abelian racks. It is then natural to ask: Are two maximal abelian subracks of C conjugated by some $g \in G$?

2. On Nichols algebras over S_m

2.1. Notation on the groups S_m. Assume that in the decomposition of $\pi \in S_m$ as product of disjoint cycles, there are b_j cycles of length j, $1 \leq j \leq m$. Then the type of $\pi \in S_m$ is the symbol $(1^{b_1}, 2^{b_2}, \ldots, m^{b_m})$; we may omit j^{b_j} when $b_j = 0$. The conjugacy class O_π of π is the set of all permutations in S_m with the same type as π; we may use the type as a subscript of a conjugacy class as well. We say that π is unmixed if the type of π is (k^m), i.e. if π is a product of disjoint cycles of the same length. Let us assume that π is unmixed. It is known that the isotropy subgroup of π satisfies $S_{kn}^\pi \simeq \Gamma \rtimes S_n$, where $\Gamma \simeq (\mathbb{Z}/k)^n$ is generated by the k-cycles in π and S_n permutes these cycles. This leads us to the representation theory of groups of the form $\Gamma \rtimes A$, with Γ abelian. The irreducible representations of $\Gamma \rtimes A$ are described as follows. Let $\chi \in \hat{\Gamma}$ and let A^χ be the isotropy group with respect to the natural action of A on $\hat{\Gamma}$. Let $\mu \in \hat{A}$ and let ρ be the induced representation $\rho = \text{Ind}_{\Gamma \rtimes A^\chi}^\Gamma \cdot \hat{\chi} \otimes \mu$. Then ρ is irreducible and any irreducible representation of $\Gamma \rtimes A$ is isomorphic to one of this form, for unique χ up to the action of A and $\mu \in \hat{A^\chi}$, see [S, 8.2].
Let \(\epsilon \) and \(\text{sgn} \) denote the trivial and sign representation of \(S_n \), respectively.

2.2. Nichols algebras corresponding to even cycles. The next application of Theorem 1.2 is [AZ, Lemma 2.3].

Lemma 2.1. If \(\dim \mathfrak{B}(\mathcal{O}_\pi, \rho) < \infty \) then \(q_{\pi \pi} = -1 \) and \(\pi \) has even order. \(\square \)

In this subsection we consider the case when the type of \(\pi \) in \(S_k \) is \((k)\), with \(2 < k \) even. Thus, \(\mathcal{O}_\pi \) is the set of \(k \)-cycles in \(S_k \). Fix \(\pi = (12\ldots k) \); the isotropy subgroup is \(S_k^\pi = \langle \pi \rangle \simeq \mathbb{Z}_k \). If \((j, k)\) denotes the highest common divisor of \(j \) and \(k \), then the maximal abelian subrack of \(\mathcal{O}_\pi \) is

\[
T = \{ \pi^j : (j, k) = 1 \}.
\]

Clearly, \(\text{card} T \geq 2 \). Let \(\omega \in \mathbb{G}_k \), let \(\chi_\omega \) be the character of \(S_k^\pi \) defined by \(\chi_\omega(\pi) = \omega \), let \(M(\mathcal{O}_\pi, \chi_\omega) \) be the corresponding Yetter-Drinfeld module and let \(\mathfrak{B}(\mathcal{O}_\pi, \chi_\omega) \) be its Nichols algebra. We conclude from Lemma 2.1:

Proposition 2.2. Let \(\pi \in S_k \) of type \((k)\), \(k \) even. Let \(\omega \in \mathbb{G}_k \). Then \(\dim \mathfrak{B}(\mathcal{O}_\pi, \chi_\omega) = \infty \) if \(\omega \neq -1 \), and the braiding is negative if \(\omega = -1 \). \(\square \)

2.3. Nichols algebras of orbits with \(n \) transpositions. In this subsection we consider the case when the type of \(\pi \) in \(S_{2n} \) is \((2^n)\), \(n > 1 \). Thus, \(\mathcal{O}_\pi \) is the set of permutations in \(S_{2n} \) that are the product of \(n \) disjoint transpositions. Fix \(\pi = A_1\ldots A_n \) in \(S_{2n} \), with \(A_i = (2i-1 \ 2i) \). The isotropy subgroup is

\[
S_{2n}^\pi = \langle A_1, \ldots, A_n \rangle \rtimes (B_1, \ldots, B_{n-1}) \simeq \mathbb{Z}_2^n \rtimes S_n,
\]

where \(B_j = (2j-1 \ 2j+1)(2j \ 2j+2), 1 \leq j \leq n-1 \); the relations are

\[
A_i^2 = \text{id} = B_j^2, \quad A_i A_j = A_j A_i, \quad A_i B_j = B_j A_i, \quad i \neq j, j + 1, \\
A_j B_j = B_j A_{j+1}, \quad B_i B_j = B_j B_i, \quad |i - j| > 1, \quad B_j B_j \pm 1 B_j = B_j \pm 1 B_j B_j \pm 1.
\]

2.3.1. Irreducible representations of \(\mathbb{Z}_2^n \rtimes S_n \). We first list the irreducible representations of \(\mathbb{Z}_2^n \rtimes S_n \). Let \(e_i \in \mathbb{Z}_2^n \) be the element with \(1 \) in the \(i \)-th component and \(0 \) elsewhere; let \(\chi_i \in \mathbb{Z}_2^n \) be given by \(\chi_i(e_j) = (-1)^{k,j,i,j} \). The irreducible representations of \(\mathbb{Z}_2^n \) are the linear characters

\[
\chi_{i_1,\ldots,i_k} := \chi_{i_1} \cdots \chi_{i_k}, \quad 0 \leq k \leq n, \quad 1 \leq i_1 < \cdots < i_k \leq n,
\]

where \(k = 0 \) corresponds to the trivial representation \(\chi_{(0)} \) of \(\mathbb{Z}_2^n \). Let \(\chi_{(k)} := \chi_{1,\ldots,k} \). The action of \(S_n \) on \(\mathbb{Z}_2^n \) induces a natural action of \(S_n \) on \(\mathbb{Z}_2^n \); the orbit and the isotropy subgroup of \(\chi = \chi_{i_1,\ldots,i_k} \in \mathbb{Z}_2^n \) are

\[
\mathcal{O}_\chi = \{ \chi_{j_1,\ldots,j_k} : 1 \leq j_1 < \cdots < j_k \leq n \}, \quad S_n^\chi \simeq S_{n-k} \rtimes S_k.
\]
Thus the characters $\chi(k)$, $0 \leq k \leq n$, are a complete set of representatives of the orbits in \mathbb{Z}_2^n. As discussed in subsection 2.1, all the irreducible representations of $\mathbb{Z}_2^n \times S_n$ are of the form

$$\rho = \rho_{\chi(k) \mu} = \text{Ind}_{\mathbb{Z}_2^n \times S_n}^{\mathbb{Z}_2^n \times S_n \chi(k)} (\chi(k) \otimes \mu), \quad 0 \leq k \leq n, \quad \mu \in S_n^{\chi(k)}.$$

There are $\sum_{k=0}^{n} \mathcal{P}(n-k) \mathcal{P}(k)$ irreducible representations of $\mathbb{Z}_2^n \times S_n$, where \mathcal{P} is the partition function, but we do not need to consider all of them.

Remark 2.3. If k is even, then $\rho_{\chi(k) \mu}(\pi)$ acts by $q_{\pi} = 1$, for any $\mu \in S_n^{\chi(k)}$. Thus $\dim \mathcal{B}(O_\pi, \rho) = \infty$, by Lemma 2.1. So, we can assume k odd.

Let $t_1 = \pi, \ldots, t_M$ be a numeration of O_π, as in subsection 1.1; we can assume that the elements g_1, \ldots, g_M satisfying $g_i \circ \pi = t_i$, are involutions.

Proposition 2.4. If n is odd, then the braided vector space associated to $\chi(n) \otimes \epsilon$ or to $\chi(n) \otimes \text{sgn}$ is negative.

Proof. Assume that $t_i \neq t_j$ commute. We must show that $g_{ij} = t_i g_j = g_j t_i = 1$ and $g_{ij} g_{ji} = 1$. The first two conditions are fulfilled because $t_i g_j = g_j t_i$, $1 \leq i \leq M$. For the third, note that $\gamma_{ij} := g_j^{-1} t_i g_j$ and $\gamma_{ji} := g_i^{-1} t_j g_i$ are in S_{2n}, see subsection 1.3; so we can write

$$\gamma_{ij} = A_{d_1} \cdots A_{d_n} B_{h_1} \cdots B_{h_p}, \quad \gamma_{ji} = A_{e_1} \cdots A_{e_n} B_1 \cdots B_l,$$

where $d_1, \ldots, d_n, e_1, \ldots, e_n \in \{0, 1\}$. Since $\gamma_{ij}, \gamma_{ji} \in O_\pi$, signs of the permutations γ_{ij} and γ_{ji} are equal to the sign of π, which is -1, because n is odd and the sign of every permutation B_l is 1, $1 \leq l \leq n - 1$. This implies that $d_1 + \cdots + d_n$ and $e_1 + \cdots + e_n$ are odd. Now, since $t_i g_j = g_j \gamma_{ij}$ and $t_j g_i = g_i \gamma_{ji}$ then $g_{ij} g_{ji} = \rho(\gamma_{ij} \gamma_{ji})$. We consider the two cases.

(a) Assume that $\rho = \chi(n) \otimes \epsilon$. In this case, the result follows because

$$\rho(\gamma_{ij} \gamma_{ji}) = (-1)^{d_1 + \cdots + d_n} (-1)^{e_1 + \cdots + e_n} = 1.$$

(b) Assume that $\rho = \chi(n) \otimes \text{sgn}$. If $t_i = \pi$, then $\gamma_{ij} = \gamma_{ji} = t_j$, because g_j is an involution, and the result follows.

We will see that the general case follows from the case $t_i = \pi$. By definition, $M(C, \rho)$ is a S_{2n}-comodule, with coaction given by $\delta(g \nu) = t_i \otimes g \nu$, where $V = C \cdot \text{span of } \nu$. Then $M(C, \rho) = \oplus_{\tau \in S_{2n}} M(C, \rho)_\tau$, where

$$M(C, \rho)_\tau := \{ m \in M(C, \rho) : \delta(m) = \tau \otimes m \}.$$

Clearly, $M(C, \rho)_\tau = g_\tau V$, if $\tau = t_i$, and $M(C, \rho)_\tau = 0$, if $\tau \notin O_\pi$.

Let us call $\tilde{t}_1 := t_i$; then $M(C, \rho) \simeq \text{Ind}_{S_{2n}}^{S_{2n}} \tilde{V}$, where \tilde{V} is an irreducible representation of dimension 1 of $S_{2n} \simeq S_{2n}$, see (3). Let $\tilde{t}_2 := t_j$, $\tilde{g}_1 := \text{id}$
and let \(\tilde{g}_2 \) be such that \(\tilde{g}_2 \tilde{g}_1 \tilde{g}_2^{-1} = \tilde{t}_2 \). Thus, there exists \(\tilde{v} \) in \(\tilde{V} \) which satisfies
\[
\begin{align*}
g_i C v &= M(C, \rho)_{t_i} = \tilde{g}_1 C \tilde{v}, & g_j C v &= M(C, \rho)_{t_j} = \tilde{g}_2 C \tilde{v}.
\end{align*}
\]
Let us say \(\tilde{g}_1 \tilde{v} = \lambda_1 g_i v \) and \(\tilde{g}_2 \tilde{v} = \lambda_2 g_j v \). Then
\[
c(\tilde{g}_1 \tilde{v} \otimes \tilde{g}_2 \tilde{v}) = c(\lambda_1 g_i v \otimes \lambda_2 g_j v) = \lambda_1 \lambda_2 c(g_i v \otimes g_j v)
= \lambda_1 \lambda_2 q_{ij} \tilde{g}_i \tilde{g}_j v = q_{ij} \tilde{g}_2 \tilde{v} \otimes \tilde{g}_1 \tilde{v},
\]
and on the other hand, \(c(\tilde{g}_1 \tilde{v} \otimes \tilde{g}_2 \tilde{v}) = q_{12} \tilde{g}_1 \tilde{v} \otimes \tilde{g}_1 \tilde{v} \); so, \(q_{ij} = q_{12} \). Analogously, \(q_{ji} = q_{21} \). Hence, \(q_{ij} q_{ji} = q_{12} q_{21} = 1 \), and the result follows.

We proceed now to consider the different cases according to the parity of \(n \). The case \(n = 2 \) is contained in \([AZ]\). We first consider \(n = 3, 4 \) and then the general cases \(n \) even and \(n \) odd.

2.3.2. Case \(n = 3 \). Let \(\pi = (1 \, 2 \, 3)(4 \, 5 \, 6) \) in \(S_6 \). Then \(O_\pi \) has 15 elements and the isotropy subgroup of \(\pi \) is
\[
S'_6 = (A_1 = (1 \, 2), A_2 = (3 \, 4), A_3 = (5 \, 6)) \times \langle B = (1 \, 3)(2 \, 4), C = (1 \, 3 \, 5)(2 \, 4 \, 6) \rangle
\]
\[\simeq \mathbb{Z}_2^3 \rtimes S_3.\]
The defining relations for the generators \(A_1, A_2, A_3, B \) and \(C \) are \(B^2 = C^3 = 1 = A_i^2, A_i A_j = A_j A_i, BCB = C^{-1} \) and
\[
\begin{align*}
BA_1 B &= A_2, & BA_2 B &= A_1, & BA_3 B &= A_3, \\
CA_1 C^{-1} &= A_2, & CA_2 C^{-1} &= A_3, & CA_3 C^{-1} &= A_1.
\end{align*}
\]

By section 2.3.1, the irreducible representations of \(S'_6 \) are:

1. Four characters \(\chi_{\pm, \pm} \) given by \(\chi_{\pm, \pm}(A_i) = \pm 1 \) (the first subindex), \(\chi_{\pm, \pm}(B) = \pm 1 \) (the second subindex), \(\chi_{\pm, \pm}(C) = 1 \).

2. Two 2-dimensional representations \(\theta_{\pm} \) given by
\[
\theta_{\pm}(A_i) = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}, \quad \theta_{\pm}(B) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \theta_{\pm}(C) = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix},
\]
where \(\omega \in \mathbb{C}_3^* \) is a primitive 3-th root of 1.

3. Four 3-dimensional representations \(\phi_{\pm}, \psi_{\pm} \) given by
\[
\phi_{\pm}(A_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \phi_{\pm}(A_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \phi_{\pm}(A_3) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]
\[
\phi_{\pm}(B) = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & \pm 1 \\ 0 & \pm 1 & 0 \end{pmatrix}, \quad \phi_{\pm}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},
\]
and
\[
\psi_{\pm}(A_1) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \psi_{\pm}(A_2) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
\[
\psi_\pm(A_3) = \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}, \quad \psi_\pm(B) = \begin{pmatrix}
\pm1 & 0 & 0 \\
0 & 0 & \pm1 \\
0 & \pm1 & 0
\end{pmatrix}, \quad \psi_\pm(C) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}.
\]

The representations \(\chi_{-}\pm\) are the \(\chi_{(n)} \otimes \epsilon\) and \(\chi_{(n)} \otimes \text{sgn}\) in Proposition 2.4, thus we can not decide the dimension of their Nichols algebras. For the others, we have:

Proposition 2.5. Let \(\pi \in S_6\) with type \((2^3)\). Let \(\rho \in S_6^\pi\). If \(\rho \neq \chi_{-}\pm\) then \(\dim \mathcal{B}(O_\pi, \rho) = \infty\).

Proof. We can assume that \(\pi = A_1A_2A_3 = (12)(34)(56)\). Let \(\rho \in S_6^\pi\) and \(V\) the vector space affording \(\rho\). We look for a braided subspace of diagonal type of \(M(O_\pi, \rho)\). Set \(\alpha = (12)(35)(46), \beta = (12)(36)(45)\) in \(O_\pi\); if \(\sigma_1 = \text{id}, \sigma_2 = (45), \sigma_3 = (46)\) then

\[
\sigma_1 \triangleright \pi = \pi, \quad \sigma_2 \triangleright \pi = \alpha, \quad \sigma_3 \triangleright \pi = \beta.
\]

Let \(\sigma_j v := \sigma_j \otimes v, v \in V, 1 \leq j \leq 3\). The coaction is given by \(\delta(\sigma_j v) = \sigma_j \triangleright \pi \otimes \sigma_j v\); we need the action of the elements \(\pi, \alpha, \beta\), which is

\[
\pi \cdot \sigma_1 v = \sigma_1 \rho(\pi)(v), \quad \pi \cdot \sigma_2 v = \sigma_2 \rho(\alpha)(v), \quad \pi \cdot \sigma_3 v = \sigma_3 \rho(\beta)(v),
\]

\[
\alpha \cdot \sigma_1 v = \sigma_1 \rho(\alpha)(v), \quad \alpha \cdot \sigma_2 v = \sigma_2 \rho(\pi)(v), \quad \alpha \cdot \sigma_3 v = \sigma_3 \rho(\alpha)(v),
\]

\[
\beta \cdot \sigma_1 v = \sigma_1 \rho(\beta)(v), \quad \beta \cdot \sigma_2 v = \sigma_2 \rho(\beta)(v), \quad \beta \cdot \sigma_3 v = \sigma_3 \rho(\pi)(v).
\]

Hence the braiding is given by

\[
c(\sigma_1 v \otimes \sigma_2 w) = \sigma_2 \rho(\alpha)(w) \otimes \sigma_1 v, \quad c(\sigma_1 v \otimes \sigma_3 w) = \sigma_3 \rho(\beta)(w) \otimes \sigma_1 v,
\]

\[
c(\sigma_2 v \otimes \sigma_1 w) = \sigma_1 \rho(\alpha)(w) \otimes \sigma_2 v, \quad c(\sigma_2 v \otimes \sigma_3 w) = \sigma_3 \rho(\alpha)(w) \otimes \sigma_2 v,
\]

\[
c(\sigma_3 v \otimes \sigma_1 w) = \sigma_1 \rho(\beta)(w) \otimes \sigma_3 v, \quad c(\sigma_3 v \otimes \sigma_2 w) = \sigma_2 \rho(\beta)(w) \otimes \sigma_3 v,
\]

and \(c(\sigma_j v \otimes \sigma_j w) = (\sigma_j \triangleright \pi) \cdot \sigma_j w \otimes \sigma_j v = \sigma_j \rho(\pi)(w) \otimes \sigma_j v = -\sigma_j w \otimes \sigma_j v\), for all \(1 \leq j \leq 3\) and \(v, w \in V\).

We now consider the different possibilities for \(\rho\). If \(\rho = \chi_{+}\pm, \theta_+\) or \(\psi_\pm\) then \(q_{\pi\pi} = 1\) and \(\dim \mathcal{B}(O_\pi, \rho) = \infty\), by Lemma 1.1.

If \(\rho = \theta_-\) then \(\rho(\alpha) = \rho(\beta) = \begin{pmatrix} 0 & -\omega^{-1} \\ -\omega & 0 \end{pmatrix}\). Choose \(v_1 = \begin{pmatrix} 1 & -\omega \end{pmatrix}\) and \(v_2 = \begin{pmatrix} 1 \\ \omega \end{pmatrix}\). Hence \(\rho(\alpha)(v_1) = \rho(\beta)(v_1) = v_1, \rho(\alpha)(v_2) = \rho(\beta)(v_2) = -v_2\).

Therefore the braiding is diagonal of Cartan type in the basis

\[
w_1 = \sigma_1 v_1, \quad w_2 = \sigma_1 v_2, \quad w_3 = \sigma_2 v_1, \quad w_4 = \sigma_2 v_2, \quad w_5 = \sigma_3 v_1, \quad w_6 = \sigma_3 v_2.
\]

The corresponding Dynkin diagram is \(A_3^{(1)}\), which is affine. By Theorem 1.2, \(\dim \mathcal{B}(O_\pi, \theta_-) = \infty\).
Assume now that $\rho = \phi_+$. Then $\phi_+(\alpha) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

$\phi_+(\beta) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. Choose $v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Thus,

$\rho(\alpha)(v_1) = v_1$, $\rho(\alpha)(v_2) = v_2$, $\rho(\alpha)(v_3) = -v_3$,

$\rho(\beta)(v_1) = -v_1$, $\rho(\beta)(v_2) = -v_2$, $\rho(\beta)(v_3) = v_3$.

Hence the braiding is diagonal of Cartan type in the basis

$w_1 = \sigma_1 v_1$, $w_2 = \sigma_1 v_2$, $w_3 = \sigma_1 v_3$,

$w_4 = \sigma_2 v_1$, $w_5 = \sigma_2 v_2$, $w_6 = \sigma_2 v_3$,

$w_7 = \sigma_3 v_1$, $w_8 = \sigma_3 v_2$, $w_9 = \sigma_3 v_3$;

this implies that the corresponding Dynkin diagram contains the affine Dynkin diagram $A_2^{(1)}$. By Theorem 1.2, $\dim \mathfrak{B}(\mathcal{O}_\pi, \phi_+) = \infty$. Finally, the case $\rho = \phi_-$ is similar. \qed

2.3.3. Case $n = 4$. Let $\pi = (1 2)(3 4)(5 6)(7 8)$ in S_8. The isotropy subgroup of π is $S_8 = \langle A_1, A_2, A_3, A_4 \rangle \rtimes B_1, B_2, B_3 \simeq \mathbb{Z}_4^2 \rtimes S_4$, where $A_1 = (1 2), A_2 = (3 4), A_3 = (5 6), A_4 = (7 8)$, and

$B_1 = (1 3)(2 4) \quad B_2 = (3 5)(4 6) \quad B_3 = (5 7)(6 8)$.

By section 2.3.1, there are 20 irreducible representations of S_8, but by Remark 2.3 we only need to consider 6 of them. They are

$\rho_1 = \text{Ind}(\chi(1) \otimes \epsilon)$, $\rho_2 = \text{Ind}(\chi(1) \otimes \text{sgn})$, $\rho_3 = \text{Ind}(\chi(1) \otimes \theta)$,

$\rho_4 = \text{Ind}(\chi(3) \otimes \epsilon)$, $\rho_5 = \text{Ind}(\chi(3) \otimes \text{sgn})$, $\rho_6 = \text{Ind}(\chi(3) \otimes \theta)$,

where Ind means Ind$^{\mathbb{Z}_4^2 \rtimes S_4}$ and θ is the standard representation of S_3. With this notation, we can state the following result.

Proposition 2.6. Let $\pi \in S_8$ of type (2^4). Then $\dim \mathfrak{B}(\mathcal{O}_\pi, \rho) = \infty$ for any $\rho \in \hat{S}_8$.

Proof. We can assume that $\pi = (1 2)(3 4)(5 6)(7 8)$. We shall later prove that if $i = 1, 2, 4$ or 5 then $\dim \mathfrak{B}(\mathcal{O}_\pi, \rho_i) = \infty$, for any $n \geq 4$, see Lemmata 2.7 and 2.8. We check now the remaining $i = 3, 6$. It is clear that π, $\alpha = (12)(34)(57)(68)$, $\beta = (12)(34)(58)(67)$ are in \mathcal{O}_π and they satisfy the same relations as in the proof of Proposition 2.5, with $\sigma_1 = \text{id}$, $\sigma_2 = (6 7)$, $\sigma_3 = (6 8)$. Let us consider ρ_3. In an appropriate basis, we have
\[
\rho_3(\alpha) = \begin{pmatrix}
0 & 0 & 0 & 0 & -\omega^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\omega^{-1} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-\omega & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\omega & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix},
\]

\[
\rho_3(\beta) = \begin{pmatrix}
0 & 0 & 0 & 0 & -\omega^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\omega^{-1} & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-\omega & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\omega & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0
\end{pmatrix},
\]

where \(\omega \in \mathbb{C}^\times \) is a primitive 3-th root of the unity. It is easy to see that

\[
v_1 = e_1 + \omega e_5, \quad v_2 = e_2 + \omega e_6, \quad v_3 = e_3 + e_4, \quad v_4 = e_3 - e_4, \\
v_5 = e_1 - \omega e_5, \quad v_6 = e_2 - \omega e_6, \quad v_7 = e_7 + e_8, \quad v_8 = e_7 - e_8
\]

are eigenvectors of eigenvalues 1 or \(-1\). In particular

\[
\rho_3(\alpha)v_7 = v_7, \quad \rho_3(\alpha)v_8 = -v_8, \quad \rho_3(\beta)v_7 = -v_7, \quad \rho_3(\beta)v_8 = v_8.
\]

So, in the basis \(w_1 = \sigma_1 v_1, w_2 = \sigma_1 v_2, w_3 = \sigma_2 v_3, w_4 = \sigma_2 v_4, w_5 = \sigma_3 v_5, w_6 = \sigma_3 v_6, \) the braiding is diagonal of Cartan type. The corresponding Dynkin diagram is not connected; its connected components are \(\{1, 4, 6\} \) and \(\{2, 3, 5\} \), each of them supporting the affine Dynkin diagram \(A_2^{(1)} \). Then

\[
\dim \mathfrak{B}(O_\pi, \rho_3) = \infty \text{ by Theorem 1.2.}
\]

Finally, if \(\rho = \rho_6 \) we have

\[
\rho_6(\alpha) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\omega^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\omega^{-1} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\omega & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega & 0 & 0 & 0 & 0
\end{pmatrix},
\]
In particular

$$\rho_6(\beta) = \begin{pmatrix}
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\omega^{-1} \\
0 & 0 & 0 & 0 & 0 & 0 & -\omega^{-1} \\
0 & 0 & -\omega & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega & 0 & 0 & 0
\end{pmatrix}.$$

The following are eigenvectors of eigenvalues 1 or -1

$$v_1 = e_1 + e_2, \quad v_2 = e_1 - e_2, \quad v_3 = e_3 + \omega e_7, \quad v_4 = e_4 + \omega e_8,$$

$$v_5 = e_5 + e_6, \quad v_6 = e_5 - e_6, \quad v_7 = e_3 - \omega e_7, \quad v_8 = e_4 - \omega e_8.$$

In particular

$$\rho_6(\alpha) v_1 = v_1, \quad \rho_6(\alpha) v_2 = -v_2, \quad \rho_6(\beta) v_1 = -v_1, \quad \rho_6(\beta) v_2 = v_2.$$

So, in the basis $w_1 = \sigma_1 v_1, w_2 = \sigma_1 v_2, w_3 = \sigma_2 v_1, w_4 = \sigma_2 v_2, w_5 = \sigma_3 v_1, w_6 = \sigma_3 v_2$, the braiding is diagonal of Cartan type. This is similar to the case of ρ_3 interchanging the roles of v_7 by v_1 and v_8 by v_2. Then $\dim \mathcal{B}(O_\pi, \rho_6) = \infty$ by Theorem 1.2.

2.3.4. Case n general. We now begin the analysis of the general case. We prove two lemmata.

Lemma 2.7. If ρ is either $\text{Ind}_{Z_2 \times S_n}^{Z_2 \times S_n} (\chi(1) \otimes \epsilon)$ or $\text{Ind}_{Z_2 \times S_n}^{Z_2 \times S_n} (\chi(1) \otimes \text{sgn})$ then $\dim \mathcal{B}(O_\pi, \rho) = \infty$, for any $n \geq 2$.

Proof. Let $\sigma_1 = \text{id}$, $\sigma_2 = (2n - 22n - 1)$ and $\sigma_3 = (2n - 22n)$. We define $\alpha := \sigma_2 \triangleright \pi$ and $\beta = \sigma_3 \triangleright \pi$, so

$$\alpha = A_1 A_2 \ldots A_{n-2}(2n - 32n - 1)(2n - 22n),$$

$$\beta = A_1 A_2 \ldots A_{n-2}(2n - 32n)(2n - 22n - 1);$$

we set $T = \{\pi, \alpha, \beta\}$. It is straightforward to check that

$$(5) \quad \alpha = \pi A_{n-1} A_n B_{n-1} = \beta A_{n-1} A_n, \quad \beta = \pi B_{n-1}.$$

Now we proceed as in the proof of Proposition 2.5. Let $\sigma_j v := \sigma_j \otimes v, v \in V, 1 \leq j \leq 3$. The coaction is given by $\delta(\sigma_j v) = \sigma_j \triangleright \pi \otimes \sigma_j v$; the action of the elements π, α, β is

$$\pi \cdot \sigma_1 v = \sigma_1 \rho(\pi)(v), \quad \pi \cdot \sigma_2 v = \sigma_2 \rho(\alpha)(v), \quad \pi \cdot \sigma_3 v = \sigma_3 \rho(\beta)(v),$$

$$\alpha \cdot \sigma_1 v = \sigma_1 \rho(\alpha)(v), \quad \alpha \cdot \sigma_2 v = \sigma_2 \rho(\pi)(v), \quad \alpha \cdot \sigma_3 v = \sigma_3 \rho(\alpha)(v),$$

$$\beta \cdot \sigma_1 v = \sigma_1 \rho(\beta)(v), \quad \beta \cdot \sigma_2 v = \sigma_2 \rho(\beta)(v), \quad \beta \cdot \sigma_3 v = \sigma_3 \rho(\pi)(v).$$
Hence the braiding is given by
\[
c(\sigma_1 v \otimes \sigma_2 w) = \sigma_2 \rho(\alpha)(w) \otimes \sigma_1 v,
\]
\[
c(\sigma_2 v \otimes \sigma_1 w) = \sigma_1 \rho(\alpha)(w) \otimes \sigma_2 v,
\]
\[
c(\sigma_3 v \otimes \sigma_1 w) = \sigma_1 \rho(\beta)(w) \otimes \sigma_3 v,
\]
\[
c(\sigma_3 v \otimes \sigma_2 w) = \sigma_2 \rho(\beta)(w) \otimes \sigma_3 v,
\]
and \(c(\sigma_j v \otimes \sigma_j w) = (\sigma_j \cdot \pi) \cdot \sigma_j w \otimes \sigma_j v = \sigma_j \rho(\pi)(w) \otimes \sigma_j v = -\sigma_j w \otimes \sigma_j v\), for all \(1 \leq j \leq 3\) and \(v, w \in V\).

Let us consider \(\rho = \text{Ind}_{\mathbb{Z}_2 \times \mathbb{S}_n}^{\mathbb{Z}_2 \times \mathbb{S}_n} \chi_{(1)} \otimes \varepsilon\). The vector space affording \(\rho\) has dimension \(n\). It is easy to see that for every \(i, 1 \leq i \leq n\), the matrix \(\rho(A_i)\) is diagonal with \((\rho(A_i))_{i,i} = -1\) and 1 elsewhere; while
\[
\rho(B_{n-1}) = \begin{pmatrix}
\text{Id}_{n-2} & 0 & 1 \\
0 & -1 \\
1 & 0
\end{pmatrix}.
\]
Therefore, we have \(\rho(\pi) = -\text{Id}\) and, by (5),
\[
\rho(\alpha) = \begin{pmatrix}
-\text{Id}_{n-2} & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix}
-\text{Id}_{n-2} & 0 & 1 \\
0 & -1 & 0
\end{pmatrix}.
\]
Choose \(v_i = e_i, 1 \leq i \leq n - 2, v_{n-1} = e_{n-1} + e_n\) and \(v_n = e_{n-1} - e_n\). Hence
\[
\rho(\alpha) v_i = -v_i, \quad \rho(\alpha) v_{n-1} = v_{n-1}, \quad \rho(\alpha) v_n = -v_n,
\]
\[
\rho(\beta) v_i = -v_i, \quad \rho(\beta) v_{n-1} = -v_{n-1}, \quad \rho(\beta) v_n = v_n,
\]
with \(1 \leq i \leq n - 2\). Then the braiding is diagonal of Cartan type in the basis \(B = \{\sigma_j v_i\}, j = 1, 2, 3, 1 \leq i \leq n\). The corresponding Dynkin diagram is not of finite type because it contains the affine Dynkin diagram \(A_2^{(1)}\). By Theorem 1.2, \(\dim \mathfrak{B}(\mathcal{O}_e, \rho) = \infty\).

Finally, if \(\rho = \text{Ind}_{\mathbb{Z}_2 \times \mathbb{S}_n}^{\mathbb{Z}_2 \times \mathbb{S}_n} \chi_{(1)} \otimes \text{sgn}\), \(\rho(A_j)\) are as before and
\[
\rho(B_{n-1}) = \begin{pmatrix}
-\text{Id}_{n-2} & 0 & 1 \\
0 & -1 \\
1 & 0
\end{pmatrix}.
\]
Then,
\[
\rho(\alpha) = \begin{pmatrix}
\text{Id}_{n-2} & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix}
\text{Id}_{n-2} & 0 & 1 \\
0 & -1 & 0
\end{pmatrix}.
\]
Let v_i be as before; hence

\[\rho(\alpha)v_i = v_i, \quad \rho(\alpha)v_{n-1} = v_{n-1}, \quad \rho(\alpha)v_n = -v_n, \]

\[\rho(\beta)v_i = v_i, \quad \rho(\beta)v_{n-1} = -v_{n-1}, \quad \rho(\beta)v_n = v_n, \]

with $1 \leq i \leq n - 2$. Then the braiding is diagonal of Cartan type in the basis \mathcal{B}. The corresponding Dynkin diagram is not of finite type because it contains the affine diagram $A_2^{(1)}$. By Theorem 1.2, $\dim \mathcal{B}(\sigma, \rho) = \infty$. □

Lemma 2.8. If ρ is either $\text{Ind}_{\mathbb{Z}_2 \rtimes \mathbb{S}_n}^{\mathbb{Z}_2 \rtimes \mathbb{S}_n} (\chi(n-1) \otimes \epsilon)$ or $\text{Ind}_{\mathbb{Z}_2 \rtimes \mathbb{S}_n}^{\mathbb{Z}_2 \rtimes \mathbb{S}_n} (\chi(n-1) \otimes \text{sgn})$ then $\dim \mathcal{B}(\sigma, \rho) = \infty$, for any $n \geq 2$.

Proof. Let σ_j, α and β be as in the proof of Lemma 2.7.

If $\rho = \text{Ind}_{\mathbb{Z}_2 \rtimes \mathbb{S}_n}^{\mathbb{Z}_2 \rtimes \mathbb{S}_n} (\chi(n-1) \otimes \epsilon)$, then for every i, $1 \leq i \leq n$, the matrix $\rho(A_i)$ is diagonal with \((\rho(A_i))_{n-i+1,n-i+1} = 1 \) and -1 elsewhere; while

\[\rho(B_{n-1}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \text{Id}_{n-2} \end{pmatrix}. \]

Therefore, we have $\rho(\pi) = -\text{Id}$ and, by (5),

\[\rho(\alpha) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ \text{Id}_{n-2} \end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ -\text{Id}_{n-2} \end{pmatrix}. \]

Choose $v_1 = e_1 + e_2$, $v_2 = e_1 - e_2$ and $v_i = e_i$, $3 \leq i \leq n$. Hence

\[\rho(\alpha)v_1 = -v_1, \quad \rho(\alpha)v_2 = v_2, \quad \rho(\alpha)v_i = v_i, \]

\[\rho(\beta)v_1 = -v_1, \quad \rho(\beta)v_2 = v_2, \quad \rho(\beta)v_i = -v_i, \]

with $3 \leq i \leq n$. Then the braiding is diagonal of Cartan type in the basis $\mathcal{B} = \{\sigma_jv_i\}$, $j = 1, 2, 3$, $1 \leq i \leq n$. The corresponding Dynkin diagram is not of finite type because it contains the affine Dynkin diagram $A_5^{(1)}$. By Theorem 1.2, $\dim \mathcal{B}(\sigma, \rho) = \infty$.

Finally, if $\rho = \text{Ind}_{\mathbb{Z}_2 \rtimes \mathbb{S}_n}^{\mathbb{Z}_2 \rtimes \mathbb{S}_n} (\chi(n-1) \otimes \text{sgn})$ then the matrices $\rho(A_i)$ are the same as in the previous case and

\[\rho(B_{n-1}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ -\text{Id}_{n-2} \end{pmatrix}. \]
Then,
\[
\rho(\alpha) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.
\]

Let \(v_i \) as before; hence
\[
\rho(\alpha)v_1 = -v_1, \quad \rho(\alpha)v_2 = v_2, \quad \rho(\alpha)v_i = -v_i,
\]
\[
\rho(\beta)v_1 = -v_1, \quad \rho(\beta)v_2 = v_2, \quad \rho(\beta)v_i = v_i,
\]
with \(3 \leq i \leq n \). Then the braiding is diagonal of Cartan type in the basis \(\mathcal{B} \).

The corresponding Dynkin diagram is not of finite type because it contains the affine Dynkin diagram \(A_5^{(1)} \). By Theorem 1.2, \(\dim \mathfrak{B}(O_n, \rho) = \infty \).

Notice that if \(n \) is odd, then the analog of Lemma 2.8 follows from Remark 2.3. Next we set some notation separately for the cases \(n \) even and \(n \) odd.

Notation in case \(n \) even. We suppose \(n = 2L \) and for every \(l \), with \(1 \leq l \leq L \), we define \(\sigma_i^+ := (4l - 2, 4l - 1) \), \(\sigma_i^- := (4l - 2, 4l) \) and
\[
\alpha_l := \sigma_i^+ \triangleright \pi, \quad \beta_l := \sigma_i^- \triangleright \pi.
\]
That is, if \(\pi = A_1A_2 \cdots A_{2l-1}A_{2l} \cdots A_{2L-1}A_{2L} \), then
\[
\alpha_l = A_1A_2 \cdots (4l - 3, 4l - 1)(4l - 2, 4l) \cdots A_{2L-1}A_{2L},
\]
\[
\beta_l = A_1A_2 \cdots (4l - 3, 4l)(4l - 2, 4l - 1) \cdots A_{2L-1}A_{2L}.
\]

It is easy to see that \(\sigma_i^+ \sigma_h^+ = \sigma_h^+ \sigma_i^+ \), for all \(l, h \) distinct. Let \(T \) be the set
\[
T = \{ \sigma_k^\pm (\cdots (\sigma_l^\pm \triangleright \pi) \cdots) : 1 \leq k \leq L, 1 \leq l_1 < \cdots < l_k \leq L \} \cup \{ \pi \}.
\]

Note that \(\sigma_k^\pm (\cdots (\sigma_l^\pm \triangleright \pi) \cdots) = (\sigma_k^\pm \cdots \sigma_l^\pm) \triangleright \pi \). Let \(T = \{ \pi_0 = \pi, \pi_1, \ldots, \pi_N \} \) be a numeration of \(T \); we call \(\sigma_0 = \text{id} \) and \(\sigma_j \) the element \(\sigma_i^\pm \) such that \(\sigma_j \triangleright \pi = \pi_j, 1 \leq j \leq N \).

Straightforward computations imply the following.

Lemma 2.9. For all \(l, 1 \leq l \leq L \), we have
\[
\begin{align*}
(i) \quad & \sigma_l^- \sigma_{2l-1} A_{2l-1} A_{2l} \sigma_l^+ = \sigma_l^+ A_{2l-1} A_{2l} \sigma_l^- . \\
(ii) \quad & \sigma_l^+ \sigma_{2l-1} A_{2l-1} A_{2l} \sigma_l^- = \sigma_l^- A_{2l-1} A_{2l} \sigma_l^+ . \\
(iii) \quad & \sigma_l^+ A_{2l-1} A_{2l} \sigma_l^+ A_{2l-1} A_{2l} = \sigma_l^+ A_{2l-1} A_{2l} \sigma_l^- . \\
(iv) \quad & A_{2l-1} A_{2l} \sigma_l^+ A_{2l-1} A_{2l} = \sigma_l^+ A_{2l-1} A_{2l} \sigma_l^- . \\
(v) \quad & \alpha_l \beta_l = A_{2l-1} A_{2l} = \beta_l \alpha_l.
\end{align*}
\]
Lemma 2.10. (1) If \(1 \leq l \leq L \), then
\[
\alpha_l = \pi A_{2l-1} A_{2l} B_{2l-1} = \beta_l A_{2l-1} A_{2l}, \quad \beta_l = \pi B_{2l-1}.
\]

(2) \(T \subseteq \mathcal{O}_n \cap S^2_{2n} \).

(3) For every \(i, j, \) \(0 \leq i, j \leq N \), there exists \(k, 0 \leq k \leq N \) such that \(\pi_i \sigma_j = \sigma_j \pi_k \).

(4) \(T \) is abelian.

Proof. (1) is obvious. (2) Clearly, \(T \subseteq S^2_{2n} \) we need to prove that \(\pi_i = (\sigma_{i_k}^\pm \cdots \sigma_{i_1}^\pm) \sigma \) in \(S^2_{2n} \). This is clear for \(k = 1 \); then it follows by induction on \(k \).

(3) Note that if \(i = 0 \) then \(k = j \); if \(i = j \) then \(k = 0 \), etc. Fix \(\pi_i = (\sigma_{i_k}^\pm \cdots \sigma_{i_1}^\pm) \sigma \), with \(1 \leq l_1 < \cdots < l_k \leq L \); suppose \(\sigma_j = \sigma_{l_M}^\pm \cdots \sigma_{l_1}^\pm \), with \(1 \leq h_1 < \cdots < h_M \leq L \). Then
\[
\sigma_j \pi_i \sigma_j = \sigma_{l_k}^\pm \cdots \sigma_{l_1}^\pm \sigma_{h_M} \cdots \sigma_{h_1} \sigma_{l_M}^\pm \cdots \sigma_{l_1}^\pm.
\]

If \(l_r \neq h_s \) for all \(r, s \) then \(\pi_k := \sigma_j \pi_i \sigma_j \) is in \(T \). If \(l_r = h_s \) for many \(r, s \) we have that in the expression \(\sigma_j \pi_i \sigma_j \) the factors \(\sigma_{l_r}^\pm \) and \(\sigma_{h_s}^\pm \) cancel mutually while for the factors \(\sigma_{l_r}^\pm \) and \(\sigma_{h_s}^\pm \) we use the Lemma 2.9(i),(ii) and we have
\[
\sigma_j \pi_i \sigma_j = \cdots \sigma_{l_r}^\pm \sigma_{h_s}^\pm \sigma_{h_s}^\pm \sigma_{l_r}^\pm \cdots = \cdots \sigma_{h_s}^\pm \sigma_{h_s}^\pm \cdots.
\]

Therefore \(\sigma_j \pi_i \sigma_j \) is in \(T \).

(4) We need to prove \(\pi_i \pi_j = \pi_j \pi_i \), for every \(i, j \).

(a) We analyze the cases when \(\pi_i = \alpha_l \) or \(\beta_l \) and \(\pi_j = \alpha_h \) or \(\beta_h \).

Case (i). If \(\pi_i = \alpha_l \) and \(\pi_j = \alpha_h \), then
\[
\pi_i \pi_j = \sigma_{l_i}^\pm A_{2l-1} A_{2l} \sigma_{l_i}^\pm \sigma_{h} \sigma_{h} A_{2h-1} A_{2h} \sigma_{h}^\pm.
\]

If \(l = h \) then the claim is clearly true. If \(l \neq h \) we have that \(\sigma_{l_i}^\pm A_{2l-1} A_{2l} \sigma_{l_i}^\pm \) and \(\sigma_{h} A_{2h-1} A_{2h} \sigma_{h}^\pm \) commute because they are disjoint permutations; hence the result follows.

Case (ii). If \(\pi_i = \beta_l \) and \(\pi_j = \beta_h \). Idem.

Case (iii). If \(\pi_i = \alpha_l \) and \(\pi_j = \beta_h \), then
\[
\pi_i \pi_j = \sigma_{l_i}^\pm A_{2l-1} A_{2l} \sigma_{l_i}^\pm \sigma_{h} A_{2h-1} A_{2h} \sigma_{h}^\pm.
\]

If \(l \neq h \) then \(\sigma_{l_i}^\pm A_{2l-1} A_{2l} \sigma_{l_i}^\pm \) and \(\sigma_{h} A_{2h-1} A_{2h} \sigma_{h}^\pm \) commute; hence \(\pi_i \pi_j = \pi_j \pi_i \). While if \(l = h \), it is easy to check that \(\pi_i \pi_j = \alpha_l \beta_l = \beta_l \alpha_l = \pi_j \pi_i \), and the result follows.
(b) In general, for \(\pi_i = (\sigma^+_{l_1} \cdots \sigma^+_{l_1}) \triangleright \pi \) and \(\pi_j = (\sigma^+_{h_{M}} \cdots \sigma^+_{h_{1}}) \triangleright \pi \), we have

\[
\pi_i = \sigma^+_{l_1}A_{2l_1-1}A_{2l_2} \cdots \sigma^+_{h_{M}}A_{2h_{M}-1}A_{2L-1},
\]

\[
\pi_j = \sigma^+_{h_1}A_{2h_1-1}A_{2h_2} \cdots \sigma^+_{h_{M}}A_{2h_{M}-1}A_{2L-1}.
\]

We have two cases:

(i) If \(l_r \neq h_s \), for all \(r, s \). Then

\[
\pi_i \pi_j = \sigma^+_{l_1}A_{2l_1-1}A_{2l_2} \cdots \sigma^+_{h_{M}}A_{2h_{M}-1}A_{2L-1} \sigma^+_{l_1} \]

because every \(\sigma^+_{l_1}A_{2l_1-1}A_{2l_2} \sigma^+_{h_1} \) commute with every \(\sigma^+_{h_1}A_{2h_1-1}A_{2h_2} \sigma^+_{h_s} \).

(ii) If \(l_r = h_s \), for some \(r, s \), we use (a) in every factor corresponding to \(l_r = h_s \). \(\square \)

For the rest of this subsection we fix the order in \(T \) given by

\[
T = \{ \pi_0 = \pi, \pi_1 = \alpha_1, \pi_2 = \beta_1, \ldots, \pi_{2L-1} = \alpha_L, \pi_{2L} = \beta_L, \ldots \}.
\]

Next we deal with \(\rho = \rho_{\chi(k), m} \) in \(\mathbb{S}_2 \), as in Section 2.3.1; as usual, let \(V \) be the vector space affording \(\rho \) and \(V_\mu \) the vector space affording \(\mu \). By Remark 2.3, we only need to consider \(k \) odd; thus \(\rho(\pi) = -\text{Id} \). Since \(\pi_i^2 = \text{Id} \), for all \(i \), then the possible eigenvalues of the operators \(\{ \rho(\pi_i) : 0 \leq i \leq N \} \) are 1 and -1. Moreover, since \(T \) is abelian there exists a basis \(B \) of \(V \) of simultaneous eigenvectors—say \(B = \{ v_1, \ldots, v_R \} \). Note that

\[
\dim V = [\mathbb{S}_2 : \mathbb{S}_n^{\chi(k)}] \dim V_\mu = \left(\begin{array}{c} n \\ k \end{array} \right) \dim V_\mu.
\]

For every \(i \), \(0 \leq i \leq N \) we define \(f^i = (f^1, f^2, \ldots, f^k) \) where \(\rho(\pi_i)v_r = f^r v_r, 1 \leq r \leq R \); for instance \(f^0 = (-1, -1, \ldots, -1) \). Now we denote by \(E_i \) the matrix with all its rows equal to \(f^i \). Hence \(E_0 \) is the matrix \(\dim V \times \dim V \) with all its entries equal to -1.

Let us consider the subspace \(W \) of \(M(O_\pi, \rho) \) with basis \(\{ w_{i, r} := \sigma_i v_r : 0 \leq i \leq N, 1 \leq r \leq R \} \). Then \(W \) is a braided vector subspace of Cartan type and the matrix of the scalars \((q_{a, b})_{a, b} \) see section 1.2– has the form

\[
Q = \begin{pmatrix}
E_0 & E_1 & E_2 & \cdots & E_{2L-1} & E_{2L} & \cdots \\
E_1 & E_0 & E_1 & \cdots & \cdots & \cdots & \cdots \\
E_2 & E_2 & E_0 & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \cdots & \cdots & \cdots \\
E_{2L-1} & \cdots & \cdots & E_0 & E_{2L-1} & \cdots & \cdots \\
E_{2L} & \cdots & \cdots & E_{2L} & E_0 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \cdots \\
\end{pmatrix}
\]

Here the diagonal blocks are equal to the matrix \(E_0 \); whereas the block in the position \(i, j \) is the matrix \(E_k \) where \(\pi_i \sigma_j = \sigma_k \pi_k \).
Notation in case \(n \) odd. We suppose \(n = 2L + 1 \) and for every \(l \), with \(1 \leq l \leq L \), we take \(\sigma_i^+, \sigma_i^-, \alpha_l, \beta_l \) and \(T \) as for \(n \) even. So
\[
\begin{align*}
\pi &= A_1A_2\ldots A_{2L-1}A_{2L+1}, \\
\alpha_l &= A_1A_2\ldots(4l - 3 \ 4l - 1)(4l - 2 \ 4l)\ldots A_{2L-1}A_{2L}A_{2L+1}, \\
\beta_l &= A_1A_2\ldots(4l - 3 \ 4l)(4l - 2 \ 4l - 1)\ldots A_{2L-1}A_{2L}A_{2L+1}.
\end{align*}
\]

Then \(\sigma_i^+, \alpha_l, \beta_l, \pi_i, \sigma_j \) and \(T \) satisfy the same properties as before.

Proposition 2.11. Let \(\rho = (\rho, V) \) be in \(\widehat{S}_{2n} \), \(n \geq 2 \). If
\[(a) \ n \ is \ even, \ or \]
\[(b) \ n = 3 \ and \ \rho \neq \chi_{-\pm}, \ or \]
\[(c) \ n \ is \ odd \ and \ \rho \neq \rho_{\chi(n), \mu}, \ for \ any \ \mu \ in \ \widehat{S}_n, \]
then \(\dim \mathfrak{B}(O_\pi, \rho) = \infty \).

Proof. Let \(\rho = \rho_{\chi(k), \mu}, \ \chi(k) \) in \(\mathbb{Z}_2^\pi \) and \(\mu \) in \(\widehat{S}_n \). By Remark 2.3, we can assume that \(k \) is odd. We distinguish two possibilities.

(1) For every \(l \), with \(1 \leq l \leq L \), \(\rho(\alpha_l) = \text{Id} = \rho(\beta_l) \) or \(\rho(\alpha_l) = -\text{Id} = \rho(\beta_l) \). By Lemma 2.10 (1), this implies
\[
\rho(A_{2L-1}A_{2L}) = \text{Id}, \quad \text{for all } l.
\]
Assume that \(n \) is even. Hence \(\rho(\pi) = \rho(A_1A_2\ldots A_{2L-1}A_{2L}) = \text{Id} \); so \(q_{\pi, \pi} = 1 \) and \(\dim \mathfrak{B}(O_\pi, \rho) = \infty \).

Assume that \(n \) is odd. Since \(\rho(\pi) = -\text{Id} \), it is easy to see that \(\rho(A_{2L+1}) = -\text{Id} \). By the discussion in subsection 2.3.1, this implies \(\rho(A_j) = -\text{Id}, \ 1 \leq j \leq 2L + 1 \). Then \(\rho = \rho_{\chi(n), \mu} \), but this is a contradiction by hypothesis.

(2) There exists \(l \) with \(\rho(\alpha_l) \neq \pm \text{Id} \) or \(\rho(\beta_l) \neq \pm \text{Id} \) or \(\rho(\alpha_l) = \pm \text{Id} = \mp \rho(\beta_l) \). Here we have that if \(\dim V > 4 \) then the generalized Cartan matrix \(\mathfrak{A} \) is such that its associated Dynkin diagram is not of finite type and the result follows. For see this we suppose that there exists \(l \) with \(\rho(\alpha_l) \neq \pm \text{Id} \); for the other cases the argument is similar. We regard that the components of the vector \(l^l \) are 1 or \(-1\); so we define \(c^+ := \text{card}\{r : f^l_r = 1\} \) and \(c^- := \text{card}\{r : f^l_r = -1\} \); note that \(c^+ + c^- = R \). We consider three cases.

(i) If \(\dim V \geq 7 \) then the associated Dynkin diagram has a vertex \(w \) with \(\lambda_w \geq 4 \), where \(\lambda_w \) denotes the number of vertices of the diagram which are adjacent to \(w \). Hence, such diagram is not of finite type.

(ii) Let \(\dim V = 6 \); if \(c^+ \geq 4 \) or \(c^- \geq 4 \) we proceed as in (i). So, we must consider \(c^+ \leq 3 \) and \(c^- \leq 3 \). Because \(c^+ + c^- = 6 \) then \(c^+ = 3 \) and \(c^- = 3 \), but since there is no Dynkin diagram of finite type with two vertices \(w, w' \) with \(\lambda_w = 3 \) and \(\lambda_{w'} = 3 \), the result follows.
(iii) If $\dim V = 5$ we only must consider either $c^+ = 3$ and $c^- = 2$ or $c^+ = 2$ and $c^- = 3$, by (ii). In any case we have that the associated Dynkin diagram has two vertices w, w' with $\lambda_w = 3$ and $\lambda_{w'} = 3$ and the result follows.

Thus, we must consider (ρ, V) with $\dim V \leq 4$. Then, since $\dim V = \binom{n}{k} \dim V_\mu$, where V_μ is the vector space affording μ, we must consider the different possibilities for n, k and μ which satisfy the condition

$$\binom{n}{k} \dim V_\mu \leq 4.$$

This inequality holds only in the following cases

1. $n = 2$ and $k = 1$.
2. $n = 3, k = 1$ or 2 and hence $\dim V_\mu = 1$.
3. $n = 4, k = 1$ or 3 and hence $\dim V_\mu = 1$.
4. any $n, k = 0$ or $k = n$ and $\dim V_\mu = 1, 2, 3$ or 4.

In (i), (ii) and (iii) the result follows from [AZ, Th. 2.7], Propositions 2.5 and 2.6, respectively. In the case (iv), $k \neq 0$ by Remark 2.3 and $k = n$ would be considered for n odd, but this was discarded by hypothesis. □

Theorem 2.12. Let $\pi \in S_{2n}$ of type (2^n).

(a). If n is even then $\dim \mathfrak{B}(O_\pi, \rho) = \infty$ for any $\rho \in \widehat{S}_{2n}$.

(b). If n is odd and $\rho \neq \chi(n) \otimes \varepsilon, \chi(n) \otimes \sgn$, then $\dim \mathfrak{B}(O_\pi, \rho) = \infty$ for any $\rho \in \widehat{S}_{2n}$.

The braided vector spaces associated to $\chi(n) \otimes \varepsilon$ or to $\chi(n) \otimes \sgn$ were considered in Proposition 2.4.

Proof. We can assume that $\pi = (1\ 2)(3\ 4)\ldots(2n - 1\ 2n)$. By Propositions 2.5 and 2.11, we only need to consider $3 < n$ odd and $\rho = \rho_{\chi(n), \mu}$, with μ in $\widehat{S}_n, \mu \neq \varepsilon, \sgn$. Notice that

$$\rho = \text{Ind}_{\mathbb{Z}_2^n \otimes S_n}^{\mathbb{Z}_2^n \otimes S_n} (\chi(n) \otimes \mu) = \text{Ind}_{\mathbb{Z}_2^n \otimes S_n}^{\mathbb{Z}_2^n \otimes S_n} (\chi(n) \otimes \mu) = \chi(n) \otimes \mu.$$

We distinguish two possibilities, as in the proof of 2.11.

1. We suppose $\rho(\alpha_l) = \text{Id} = \rho(\beta_l)$ or $\rho(\alpha_l) = -\text{Id} = \rho(\beta_l)$, for every l, with $1 \leq l \leq L$. Then it is easy to check that $\rho(B_{2l-1}) = \pm \text{Id}, 1 \leq l \leq L$.

Since \(B_2, B_1, \ldots, B_{2L} \) are disjoint permutations we have that the operators \(\rho(B_j), \ 1 \leq j \leq n \), commute. Hence, there exists a basis of simultaneous eigenvectors of such operators. This says that the representation \(\mu \) is not irreducible unless \(\dim V_\mu = 1 \), and therefore \(\mu = \text{sgn} \), but this is a contradiction by hypothesis. The case \(\rho(\alpha_l) = -\text{Id} = \rho(\beta_l), \ 1 \leq l \leq L, \) implies \(\rho(B_{2l-1}) = \text{Id}, \ 1 \leq l \leq L \); by analogous arguments we conclude \(\mu = \epsilon \), a contradiction by hypothesis.

(2). If \(n \geq 7 \) and \(\mu \neq \epsilon, \text{sgn} \), then \(\dim V_\mu > 4 \), see [FH, 4.14]; hence \(\dim \mathfrak{B}(\mathcal{O}_n^{2n}, \rho) = \infty \). It remains the case \(n = 5 \) and the representations

\[
\rho = \chi(5) \otimes \phi, \quad \rho = \chi(5) \otimes \psi,
\]

where \(\phi, \psi \) are the two irreducible representations of \(S_5 \) of dimension 4, let us say \(\phi \) the standard representation of \(S_5 \) and \(\psi \) its conjugated representation.

Let us consider \(\rho = \chi(5) \otimes \phi \). We take \(\pi = A_1A_2A_3A_4A_5, B_j, \sigma^\pm, \alpha_l, \beta_l, \pi_l, \sigma_l \) and \(T \) as in the case \(n \) odd; so \(S^-_{10} = \langle A_1, A_2, A_3, A_4, A_5 \rangle \) is a minimal pair \(sgn, B_1, B_2, B_3, B_4 >\simeq \mathbb{Z}_2 \times S_5 \) and \(T = \{ \pi_0 = \pi, \pi_1, \ldots, \pi_8 \} \) satisfying

\[
\begin{align*}
\pi_1 &= B_1A_3A_4A_5, \quad \pi_2 = \pi B_1, \quad \pi_3 = A_1A_2B_3A_5, \quad \pi_4 = \pi B_3, \quad \pi_5 = B_1B_3A_5, \\
\pi_6 &= B_1A_3A_4B_3A_5, \quad \pi_7 = A_1A_2B_1B_3A_5, \quad \pi_8 = A_1A_2B_1A_3A_4B_3A_5.
\end{align*}
\]

It is easy to check that the standard representation of \(S_5 \) can be given by

\[
\phi(12) = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \phi(23) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},
\]

\[
\phi(34) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \phi(45) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.
\]

Then it is clear that

\[
\rho(\pi) = -\text{Id}, \quad \rho(\pi_1) = \rho(\pi_2) = -\phi(B_1), \quad \rho(\pi_3) = \rho(\pi_4) = -\phi(B_3),
\]

\[
\rho(\pi_5) = \rho(\pi_6) = \rho(\pi_7) = \rho(\pi_8) = -\phi(B_1)\phi(B_3) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}. \]

If \(v_1 = (1, 0, 0, 0), v_2 = (0, 1, -1, 0), v_3 = (1, 0, 0, -2) \) and \(v_4 = (1, 1, 1, -4) \) then they are simultaneous eigenvectors of those operators. Hence, we have
\[f^1 = f^2 = (1, -1, -1, -1), \quad f^3 = f^4 = (-1, 1, -1, -1) \text{ and } f^5 = f^6 = f^7 = f^8 = (1, 1, -1, -1). \] Thus, in the basis
\[w_1 = \sigma_0 v_1, \quad w_2 = \sigma_0 v_2, \quad w_3 = \sigma_1 v_1 \]
\[w_4 = \sigma_1 v_2, \quad w_5 = \sigma_2 v_1, \quad w_6 = \sigma_2 v_2, \]
the braiding is diagonal of Cartan type and the matrix \(Q \) of the scalars \((q_{a,b})_{a,b} \) is
\[
Q = \begin{pmatrix}
-1 & -1 & 1 & -1 & 1 & -1 \\
-1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & -1
\end{pmatrix};
\]
the corresponding Dynkin diagram is \(A_5^{(1)} \), which is not of finite type. Hence \(\dim \mathfrak{B}(O_{10}^{10}, \rho) = \infty \).

Finally, if \(\rho = \chi(5) \otimes \psi \) we proceed as the previous case using that the representation \(\psi \) is given by \(\psi = \text{sgn} \times \phi \). So, in the same basis as before we have that the braiding is diagonal of Cartan type and we obtain the same matrix \(Q \); hence the result follows. \(\square \)

2.4. Nichols algebras corresponding to even unmixed permutations. Let \(r, n \in \mathbb{N}, \ r, n \geq 2 \). Let \(\pi = A_1 \ldots A_n \) in \(S_{2r^n} \), where \(A_j \) is the \(2r \)-cycle
\[A_j = (2rj - 2r + 1 \ 2rj - 2r + 2 \ldots \ 2rj), \]
for every \(j, 1 \leq j \leq n \). As explained in section 2.1, we have
\[
S_{2r^n} = (A_1, \ldots, A_n) \rtimes (B_1, \ldots, B_{n-1}) \simeq \mathbb{Z}_{2r}^n \rtimes S_n,
\]
where \(B_i \) is the involution
\[B_i = (2r(i - 1) + 1 \ 2ri + 1 \ (2r(i - 1) + 2 \ 2ri + 2) \ldots \ (2ri \ 2r(i + 1))), \]
\(1 \leq i \leq n - 1 \). Then \(A_j \) and \(B_i \) satisfy the relations analogous to those in subsection 2.3. Let \(\rho \) be an irreducible representation of \(S_{2r^n} \) of the form
\[
\rho = \text{Ind}_{\mathbb{Z}_{2r}^n \rtimes S_n}^{S_{2r^n}} (\chi \otimes \mu),
\]
where \(\chi \in \mathbb{Z}_{2r}^n \) and \(\mu \in \mathbb{S}_n \). Let \(\omega = \exp\left(\frac{2\pi i}{r}\right) \in \mathbb{G}_{2r} \) a primitive \(2r \)-th root of 1; any irreducible representation of \(\mathbb{Z}_{2r}^n \) is isomorphic to \(\chi_{u_1, \ldots, u_n} \), where
\[
\chi_{u_1, \ldots, u_n}(A_j) = \omega^{u_j}, \quad 1 \leq j \leq n,
\]
with \(0 \leq u_j \leq 2r - 1 \).

Notation: if \(\rho \) is as in (7), with \(\chi \) as in (8), we shall write \(\rho = \rho_{u_1, \ldots, u_n, \mu} \).
By Lemma 2.1, if $\rho(\pi) \neq -\text{Id}$, then $\dim \mathfrak{B}(\mathcal{C}, \rho) = \infty$. Hence, in the following we only consider $\rho = \rho_{\chi_{u_1}, \ldots, \chi_{u_n}}$ such that $\rho(\pi) = -\text{Id}$; that is

$$\omega^{u_1 + \cdots + u_n} = -1,$$

i.e. $u_1 + \cdots + u_n = r, 3r, 5r, \ldots, (2n - 1)r$.

For every (i, j), with $1 \leq i < j \leq n$, we define

$$B_{ij} := \begin{cases} B_i, & \text{if } |i - j| = 1, \\ B_iB_{i+1} \cdots B_{j-1}B_{j+1}B_i, & \text{if } |i - j| > 1, \end{cases}$$

and $\pi_{(i,j)} := \pi B_{ij}$. Note that B_{ij} acts as the transposition $(i\ j)$ on A_1, \ldots, A_n and that $\pi_{(i,j)}$ is in S^r_{2n}. We can state the following.

Lemma 2.13. For every (i, j), with $1 \leq i < j \leq n$, we have

(a) $\pi_{(i,j)}$ is in \mathcal{C}.

(b) there exists an involution $\sigma_{(i,j)}$ such that $\pi_{(i,j)} = \sigma_{(i,j)} \pi \sigma_{(i,j)}$.

(c) there exist involutions $\sigma, \tilde{\sigma}_{(i,j)}$ in S^r_{2n} such that $\pi^{-1} = \sigma \pi \sigma$ and $\pi_{(i,j)}^{-1} = \tilde{\sigma}_{(i,j)} \pi \tilde{\sigma}_{(i,j)}$.

Proof. It is enough to prove this for $i = 1$ and $j = 2$.

(a) and (b). It is easy to see that

$$\pi_{(1,2)} = \pi B_1 = (1 \ 2r + 2 \ 3 \ 2r + 4 \ 5 \ldots 4r - 2 \ 2r - 1 \ 4r) \times (2r + 3 \ 4 \ 2r + 5 \ 6 \ldots 4r - 1 \ 2r \ 2r + 1)A_3 \cdots A_n,$$

and we can choose

$$\sigma_{(1,2)} = (2 \ 2r + 2)(4 \ 2r + 4) \cdots (2r - 2 \ 4r - 2)(2r \ 4r).$$

Clearly, $\sigma_{(1,2)}$ is an involution and $\pi_{(1,2)} = \sigma_{(1,2)} \pi \sigma_{(1,2)} \in \mathcal{C}$.

(c) For every j, $1 \leq j \leq n$,

$$\sigma_j := \prod_{h=1}^{r} (2(j - 1)r + h \ 2jr - h + 1)$$

is an involution and satisfies $\sigma_j \pi \sigma_j = A_1 \cdots A_j^{-1} \cdots A_n$. Now, if $\sigma = \sigma_1 \cdots \sigma_n$ then $\pi^{-1} = \sigma \pi \sigma$. Finally, if r is even and

$$\tilde{\sigma}_{(1,2)} = (2 \ 4r)(4 \ 2r - 2) \cdots (2r \ 2r + 2) \times (3 \ 2r - 1)(5 \ 2r - 3) \cdots (r - 3 \ r + 5)(r - 1 \ r + 3) \times (2r + 3 \ 4r - 1)(2r + 5 \ 4r - 3) \cdots (2r + r - 1 \ 2r + r + 3),$$
Let us consider two possibilities.

Theorem 2.14. Let \(\rho \) be in \(S_{2m}^o \). If \(\deg \rho > 1 \) then \(\dim \mathcal{B}(\mathcal{C}, \rho) = \infty \).

Proof. Let us consider two possibilities.

(A) Assume that there exists \((i, j)\), with \(1 \leq i < j \leq n\), such that \(\rho(\pi_{(i,j)}) \neq \pm \text{Id} \). For simplicity, we denote

\[
\begin{align*}
 t_1 &:= \pi, & t_2 &:= \pi^{-1}, & t_3 &:= \pi_{(i,j)}, & t_4 &:= \pi_{(i,j)}^{-1}, \\
 g_1 &:= \text{Id}, & g_2 &:= \sigma, & g_3 &:= \sigma_{(i,j)}, & g_4 &:= \tilde{\sigma}_{(i,j)}.
\end{align*}
\]

Now, we have the following relations:

\[
\begin{align*}
 t_2g_1 &= g_1t_2, & t_2g_2 &= g_2t_1, & t_2g_3 &= g_3t_4, & t_2g_4 &= g_4t_3, \\
 t_3g_1 &= g_1t_3, & t_3g_2 &= g_2t_4, & t_3g_3 &= g_3t_1, & t_3g_4 &= g_4t_2, \\
 t_4g_1 &= g_1t_4, & t_4g_2 &= g_2t_3, & t_4g_3 &= g_3t_2, & t_4g_4 &= g_4t_1.
\end{align*}
\]

Since the elements \(t_1, t_2, t_3 \) and \(t_4 \) commute then there exists a basis of simultaneous eigenvectors \(\{v_1, \ldots, v_R\} \) of \(V \), the vector space affording \(\rho \). Hence, either the operator \(\rho(\pi_{(i,j)}) \) has at least two distinct eigenvalues or \(\rho(\pi_{(i,j)}) = \lambda \text{Id} \), with \(\lambda \neq \pm 1 \).

In the first case, there exist \(s \) and \(s' \), \(1 \leq s, s' \leq R \), such that

\[
 \rho(\pi_{(i,j)})v_s = \lambda_sv_s \quad \text{and} \quad \rho(\pi_{(i,j)})v_{s'} = \lambda_{s'}v_{s'},
\]

with \(\lambda_s \neq \lambda_{s'} \); let us consider the subspace \(W \) of \(M(\mathcal{C}, \rho) \) generated by

\[
\{g_1v_s, g_1v_{s'}, g_2v_s, g_2v_{s'}, g_3v_s, g_3v_{s'}, g_4v_s, g_4v_{s'}\}.
\]

It is clear that \(W \) is a braided vector subspace of diagonal type of \(M(\mathcal{C}, \rho) \). Now, if \(\lambda_s^2 \neq 1 \) then it is easy to see that the generalized Dynkin diagram

or if \(r \) is odd and

\[
\tilde{\sigma}_{(1,2)} = (2 \ 4r)(4r - 2) \cdots (2r \ 2r + 2) \ \ (3 \ 2r - 1)(5 \ 2r - 3) \cdots (r - 2 \ r + 4)(r \ r + 2) \ \ (2r + 3 \ 4r - 1)(2r + 5 \ 4r - 3) \cdots (2r + r \ 2r + r + 2),
\]

then \(\tilde{\sigma}_{(1,2)}^2 = \text{Id} \), and straightforward computations imply that \(\pi_{(i,2)}^{-1} = \tilde{\sigma}_{(1,2)} \pi_{(1,2)} \).

We now consider two different cases according to the degree of \(\rho \).

2.4.1. The degree of \(\rho \) is greater that 1.
contains a cycle of the form

\[
\begin{array}{ccc}
-1 & \lambda_2 & -1 \\
\lambda_2^{-2} & \lambda_2^{-1} & \lambda_2^{-1} \lambda_2^{-1} \\
-1 & -1 & -1
\end{array}
\]

while that if \(\lambda_2^2 = 1 \) then \(\lambda_2 \lambda_2' \neq 1 \), this implies that the generalized Dynkin diagram contains a cycle of the form

\[
\begin{array}{ccc}
-1 & \lambda_2 \lambda_2' & -1 \\
\lambda_2^{-2} & \lambda_2^{-1} \lambda_2^{-1} & \lambda_2^{-1} \lambda_2^{-1} \\
-1 & -1 & -1
\end{array}
\]

Hence, in both cases we have \(\dim \mathfrak{B}(\mathcal{C}, \rho) = \infty \), by \([H4]\).

In the second case, we choose any \(s, 1 \leq s \leq R \); then the subspace of \(M(\mathcal{C}, \rho) \) generated by

\[\{g_1v_s, g_2v_s, g_3v_s, g_4v_s\} \]

is a braided vector subspace of diagonal type of \(M(\mathcal{C}, \rho) \), and its Dynkin diagram contains a cycle as in (11). Hence, \(\dim \mathfrak{B}(\mathcal{C}, \rho) = \infty \), by \([H4]\).

(B) Assume that \(\rho(\pi_{(i,j)}) = \pm \text{Id}, \) for every \((i, j) \), with \(1 \leq i < j \leq n \). The relation \(\pi_{(1,2)} = \pi B_1 \) gives \(\rho(B_1) = \mp \text{Id} \); the relations \(\pi_{(1,3)} = \pi B_1 B_2 B_1 \) and \(\rho(B_1) = \pm \text{Id} \) imply that \(\rho(B_2) = \mp \text{Id} \), and so on. Hence, the operators \(\rho(A_1), \ldots, \rho(A_n), \rho(B_1), \ldots, \rho(B_{n-1}) \) commute, and there exists a basis of simultaneous eigenvectors of \(V \) for those operators. Since \(\deg \rho > 1 \), \(\rho \) is not an irreducible representation of \(\mathbb{S}^2_{2r n} \), which is a contradiction. \(\Box \)

2.4.2. The degree of \(\rho \) is 1. Say \(V = \mathbb{C} \) - span of \(v \). By (7), \(\deg \rho = [\mathbb{S}_n : \mathbb{S}^c_n] \) \(\deg \mu \); thus \(\mathbb{S}^c_n = \mathbb{S}_n \) and \(\deg \mu = 1 \). This implies that \(\rho = \chi_c, \ldots, \chi_c \otimes \mu \), for some \(c \), with \(0 \leq c \leq 2r - 1 \), and \(\mu = \epsilon \) or \(\text{sgn} \). Note that if \(c = 0 \) then \(\rho(\pi) = 1 \), which is a contradiction by hypothesis. So, we can assume \(c \neq 0 \).

We begin by the following result.

Proposition 2.15. Let \(\rho = \chi_{c_{r..r}} \otimes \mu \), with \(0 < c \leq 2r - 1 \).

(a) If \(r \) is odd and \(c \neq r \), then \(\dim \mathfrak{B}(C, \rho) = \infty \).

(b) If \(r \) is even and \(c \neq \frac{r}{2}, \frac{3r}{2} \), then \(\dim \mathfrak{B}(C, \rho) = \infty \).

Proof. Let

\[
 t_1 := \pi, \quad t_2 := \pi^{-1}, \quad t_3 := A_1^{-1}A_2 \cdots A_n, \quad t_4 := t_3^{-1},
\]

\[
 g_1 := \text{id}, \quad g_2 := \sigma, \quad g_3 := \sigma_1, \quad g_4 := \sigma_2 \cdots \sigma_n,
\]

where \(\sigma_1, \ldots, \sigma_n \) are as in the proof of Lemma 2.13 (c). It is clear that they satisfy the same relations as in subsection 2.4.1. Then the subspace of \(M(C, \rho) \) generated by \(\{g \nu, g_2 \nu, g_3 \nu, g_4 \nu\} \) is braided of diagonal type which matrix of coefficients \((q_{ij})_{ij} \), see subsection 1.2, given by

\[
 Q = \begin{pmatrix}
 -1 & -1 & -\omega^{-2c} & -\omega^{2c} \\
 -1 & 1 & -\omega^{2c} & -\omega^{-2c} \\
 -\omega^{-2c} & -\omega^{2c} & -1 & -1 \\
 -\omega^{2c} & -\omega^{-2c} & -1 & -1
 \end{pmatrix}.
\]

Since \(c \leq 2r - 1 \), it is easy to see that \(\omega^{4c} = 1 \) if and only if \(2c = r, 2r \) or \(3r \). Now, it is clear that if \(r \) is odd and \(c \neq r \), or if \(r \) is even and \(c \neq \frac{r}{2}, \frac{3r}{2} \), we have that \(\omega^{4c} \neq 1 \). This implies that the generalized Dynkin diagram has a cycle as in (11). Hence, \(\dim \mathfrak{B}(C, \rho) = \infty \). \(\square \)

In the remaining cases, the braiding is always negative.

Theorem 2.16. Assume that \(\rho(\pi) = -1 \).

(a) If \(r \) is odd and \(\rho = \chi_{r,..r} \otimes \mu \), with \(\mu = \epsilon \) or \(\text{sgn} \), then the braiding is negative.

(b) If \(r \) is even and \(\rho = \chi_{c_{r..r}} \otimes \mu \), with \(c = \frac{r}{2}, \frac{3r}{2} \) and \(\mu = \epsilon \) or \(\text{sgn} \), then the braiding is negative.

Note that, for \(\rho \) as in (a) or (b), \(\rho(\pi) \) is not necessarily equal to \(-1\).

In order to prove this result, we need two lemmata. Let us remember that \(t_1 = \pi, \ldots, t_M \) is a numeration of \(C \) and \(g_l \in S_{2r} \) are such that \(g_l \pi g_l^{-1} = t_l \), for all \(1 \leq l \leq M \); we choose \(g_1 = \text{id} \).

Let \(t_l \in C \), such that \(\pi t_l = t_l \pi \), i.e. \(t_l \in S^7_{2n} \). We know that \(\gamma_{1l} := g_l^{-1} t_l g_l = t_l \) and \(\gamma_{ll} := g_l^{-1} \pi g_l \) are in \(C \cap S^7_{2n} \). By (6), we can write

\[
 \gamma_{1l} = A_{l1}^{1l} \cdots A_{ln}^{1l} B,
\]

(12)

\[
 \gamma_{ll} = A_{l1}^{ll} \cdots A_{ln}^{ll} B',
\]

(13)

where \(B \) and \(B' \) are in \(\langle B_1, \ldots, B_{n-1} \rangle \cong S_n \). Let \(\Phi : \langle B_1, \ldots, B_{n-1} \rangle \rightarrow S_n \) be the group isomorphism given by \(\Phi(B_i) = (i \ i+1) \), \(1 \leq i \leq n - 1 \).
For every \(j, 1 \leq j \leq n \), we define
\[
A_j := \{2r_j - 2r + 1, 2r_j - 2r + 2, \ldots, 2r_j\},
\]
i.e. \(A_j \) is the set of natural numbers that are “moved” by \(A_j \). We also set
\[
J := \{ j \mid A_jB \neq BA_j \}.
\]
If \(j \notin J \) then \(d_j \) is relatively prime to \(2r \), because \(A_j^{d_j} \) is a cycle of length \(2r \). Clearly, if the type of \(\Phi(B) \) is \((L)\) then \(\text{card } J = L \). So, we can write
\[
\gamma_{11} = \prod_{j \notin J} A_j^{d_j} \prod_{j \in J} A_j^{d_j} B,
\]
and it is easy to see that \(g_l \) can be chosen
\[
g_l = \nu \prod_{j \notin J} \sigma_{l,j},
\]
where \(\sigma_{l,j} A_j \sigma_{l,j}^{-1} = A_j^{d_j} \) and every element of \(A_{j'} \) is fixed by \(\sigma_{l,j} \) if \(j \notin J \) and \(j' \neq j \), and \(\nu \) is such that
\[
\nu \prod_{j \in J} A_j \nu^{-1} = \prod_{j \in J} A_j^{d_j} B,
\]
and that every element of \(A_j, j \notin J \), is fixed by \(\nu \).

Lemma 2.17. \(\Phi(B) \) and \(\Phi(B') \) have the same type in \(S_n \).

Proof. We will consider cases according to the type of \(\Phi(B) \) in \(S_n \).

If the type of \(\Phi(B) \) is \((1^{2r})\); this means \(B = \text{id} \). We have that \(J = \emptyset \), so we can chose \(g_l = \sigma_{l,1} \cdots \sigma_{l,n} \). Then
\[
\gamma_{11} = g_l^{-1} \pi g_l = \sigma_{l,1}^{-1} A_1 \sigma_{l,1} \cdots \sigma_{l,n}^{-1} A_n \sigma_{l,n},
\]
and since \(\gamma_{11} \) is in \(C \), i.e. it is a product of disjoint cycles of length \(2r \), we have that \(\sigma_{l,j} A_j \sigma_{l,j}^{-1} \) is a cycle of length \(2r \), for all \(j \). This implies that
\[
\gamma_{11} = A_1^{e_1} \cdots A_n^{e_n},
\]
with \(e_1, \ldots, e_n \) relatively primes to \(2r \); this means that \(B' = \text{id} \).

If the type of \(\Phi(B) \) is \((2)\). It is enough to assume that \(B = B_i \) for some \(i, 1 \leq i \leq n - 1 \). We saw that if \(j \neq i, i + 1 \) then \(d_j \) is relatively prime to \(2r \), and that \(g_l \) can be chosen as in (16), i.e.
\[
g_l = \nu \prod_{j \neq i, i+1} \sigma_{l,j},
\]
where \(\nu \) satisfies \(\nu A_i A_{i+1} \nu^{-1} = A_i^{d_i} A_{i+1}^{d_{i+1}} \), and if \(j \neq i, i + 1 \) then the elements of \(A_j \) are fixed by \(\nu \). Hence,
\[
\gamma_{11} = g_l^{-1} \pi g_l = \prod_{j \neq i, i+1} \sigma_{l,j}^{-1} A_j \sigma_{l,j} \nu^{-1} A_i A_{i+1} \nu = \prod_{j \neq i, i+1} A_j^{e_j} A_i^{e_i} A_{i+1}^{e_{i+1}} B',
\]
with e_j relatively prime to $2r$, if $j \neq i, i + 1$. This implies that the type of $\Phi(B')$ is $(h_1^{b_1}, \ldots, h_K^{b_K})$ with

$$b_1 h_1 + \cdots + b_K h_K \leq 2.$$

Then the type of $\Phi(B')$ is (1) or (2); if it is (1) we have that $B' = \text{id}$, then $B = \text{id}$, by the first case, a contradiction. Thus, the type of $\Phi(B')$ is (2).

Notice that if the type of $\Phi(B)$ is (2^n) then the same occurs for $\Phi(B')$, by repeating the previous argument in each disjoint transposition that appears in the decomposition of $\Phi(B)$ as product of disjoint permutations of S_n.

In general, we can prove by the same argument that if the result is true when the type of $\Phi(B)$ is (L_1) and (L_2) then the result is also true if the type of $\Phi(B)$ is (L_1^2), if $L_1 = L_2$, or (L_1, L_2), if $L_1 \neq L_2$.

Let $\Phi(B)$ be of type (L). We use induction in L and the previous paragraphs to prove that the type of $\Phi(B')$ is (L). Explicitly, assume that there exists $L > 2$ such that for every $h < L$ it is true the following: if the type of $\Phi(B)$ is (h), then the type of $\Phi(B')$ is (h). Suppose that the type of $\Phi(B')$ is $(h_1^{b_1}, \ldots, h_K^{b_K})$. We proceed as in the case $L = 2$. We can chose g_l as in (16), with ν that satisfies (17), and if $j \notin J$ then the elements of A_j are fixed by ν. Hence

$$\gamma u = g_l^{-1} \pi g_l = \prod_{j \notin J} \sigma_{l,j}^{-1} A_j \sigma_{l,j} \quad \nu^{-1} \prod_{j \in J} A_j \nu = \prod_{j \notin J} A_j^{\nu_j} \prod_{j \in J} A_j^{\nu_j} B',$$

with e_j relatively prime to $2r$ if $j \notin J$, because γu is in C. This implies that

$$b_1 h_1 + \cdots + b_K h_K \leq L.$$

If $b_1 h_1 + \cdots + b_K h_K < L$ or if $b_1 h_1 + \cdots + b_K h_K = L$ with $K > 1$, then $h_1, \ldots, h_K < L$, and by inductive hypothesis and the previous paragraph we have that the type of $\Phi(B)$ is $(h_1^{b_1}, \ldots, h_K^{b_K}) \neq (L)$, which is a contradiction. So, type of $\Phi(B')$ is $(h_1^{b_1})$, with $b_1 h_1 = L$; if $b_1 > 1$ we use inductive hypothesis and the previous paragraph to say that the type of $\Phi(B)$ is $(h_1^{b_1}) \neq (L)$, which is a contradiction. Hence, $b_1 = 1$ and $h_1 = L$, it means that the type of $\Phi(B') = (L)$, and this concludes the proof.

\begin{lemma}
Let γ_1 and γ_1 as in (12) and (13), respectively.
\begin{enumerate}[(a)]
\item For any r if n is odd, then $\sum_{j=1}^{n} (e_j + d_j)$ is even.
\item If r is even and n is even, then $\sum_{j=1}^{n} (e_j + d_j) \equiv 0 \mod (4)$.
\end{enumerate}
\end{lemma}

\begin{proof}
(a) If n is odd we have that the sign of π in S_{2m} is

$$\text{sgn } \pi = \text{sgn } A_1 \cdots \text{sgn } A_n = (-1)^n = -1,$$

(b) If r is even and n is even, then $\sum_{j=1}^{n} (e_j + d_j) \equiv 0 \mod (4)$.
\end{proof}
because A_1, \ldots, A_n are cycles of even length. Since $\gamma_{l1} \in C$ we have that $\text{sgn} \gamma_{l1} = -1$, on the other hand
\[
\text{sgn} \gamma_{l1} = \text{sgn} A_1^{d_1} \cdots \text{sgn} A_n^{d_n} \text{sgn} B = (-1)^{d_1 + \cdots + d_n},
\]
because $B \in \langle B_1, \ldots, B_{n-1} \rangle$ and every B_1, \ldots, B_{n-1} is a product of an even number of transpositions in S_{2r_n}. Then $d_1 + \cdots + d_n$ is odd. Analogously, $e_1 + \cdots + e_n$ is odd. Then the result follows.

(b) Assume that n is even. In this case the sign of π in S_{2r_n} is 1; since γ_{l1} and γ_{l1} are in C, $d_1 + \cdots + d_n$ and $e_1 + \cdots + e_n$ are even. We suppose that the decomposition of $\Phi(B)$ in product of disjoint permutation in S_n is
\[
\Phi(B) = \tau_1 \cdots \tau_K.
\]
By Lemma 2.17, we have that
\[
\Phi(B') = \tau'_1 \cdots \tau'_K,
\]
with $|\tau_k| = |\tau'_k|$, for all k. Obviously, $|B| = \text{lcm}(|\tau_1|, \ldots, |\tau_K|) = |B'|$.

For every $k, 1 \leq k \leq K$, we define
\[
J_k := \{ j \mid 1 \leq j \leq n \text{ and } A_j \Phi^{-1}(\tau_k) \neq \Phi^{-1}(\tau_k) A_j \}.
\]
Clearly, $J_k = |\tau_k|$, for all k. Note that J_1, \ldots, J_K are disjoint sets and if J is as in (14) then $J = J_1 \cup \cdots \cup J_K$. Besides, it is clear that
\[
J_k = \{ j \mid 1 \leq j \leq n \text{ and } A_j \Phi^{-1}(\tau'_k) \neq \Phi^{-1}(\tau'_k) A_j \}.
\]
by Lemma 2.17. We write γ_{l1} as in (15) in a more precise form
\[
\gamma_{l1} = g_l \pi g_l^{-1} = \prod_{j \notin J} A_j^{d_j} \prod_{j \in J_1} A_j^{d_j} \cdots \prod_{j \in J_K} A_j^{d_j},
\]
and g_l can be chosen as in (16)
\[
g_l = \nu_1 \cdots \nu_K \prod_{j \notin J} \sigma_{l,j},
\]
where
\[
\nu_k \prod_{j \in J_k} A_j \nu_k^{-1} = \prod_{j \in J_k} A_j^{d_j} \Phi^{-1}(\tau_k),
\]
and if $j \notin J_k$ every element of A_j is fixed by ν_k; this allows to say that if $j \notin J_k$ then A_j and ν_k commute. Hence, if γ_{l1} is as in (13) then
\[
\gamma_{l1} = g_l^{-1} \pi g_l = \prod_{j \notin J} A_j^{e_j} \prod_{j \in J_1} A_j^{e_j} \cdots \prod_{j \in J_K} A_j^{e_j},
\]
and
\[
\gamma_{l1} = g_l^{-1} \pi g_l = \prod_{j \notin J} A_j^{e_j} \prod_{j \in J_1} A_j^{e_j} \cdots \prod_{j \in J_K} A_j^{e_j},
\]
with

\[
(21) \quad \prod_{j \in J_k} A_j^{e_j} \Phi^{-1}(\tau_k^j) = \nu_k^{-1} \prod_{j \in J_k} A_j \nu_k.
\]

Since \(|\gamma_1| = 2r\), then \(B^{2r} = \text{id}\); this implies that \(|B|\) divides \(2r\), let us say \(2r = |B|q\), with \(q \geq 1\). It is straightforward to prove that

\[
(22) \quad \left(\prod_{j \in J} A_j^{d_j} B\right)^{h|B|} = \left(\prod_{j \in J_1} A_j^{d_j}\right)^{h|B| \sum j \in J_1 d_j} \cdots \left(\prod_{j \in J_K} A_j^{d_j}\right)^{h|B| \sum j \in J_K d_j},
\]

for all integer \(h\). When \(h = q\) both sides are equal to \(\text{id}\) and this implies

\[
\left(\prod_{j \in J_k} A_j\right)^{q|B| |J| d_j} = \text{id},
\]

for all \(k\). Since the order of \(\prod_{j \in J_k} A_j\) is \(2r\) we have that \(|\tau_k|\) divides \(\sum j \in J_k d_j\). Analogously, we can prove that \(|\tau_k'|\) divides \(\sum j \in J_k e_j\), for all \(K\). Hence, for every \(k, 1 \leq k \leq K\), there exist \(p_k, p_k' \geq 1\) such that

\[
(23) \quad \sum_{j \in J_k} d_j = |\tau_k|p_k \quad \text{and} \quad \sum_{j \in J_k} e_j = |\tau_k|p_k'.
\]

By (20), (21) and (22), for every \(k\) we have that

\[
\left(\prod_{j \in J_k} A_j\right)^{h|B|} = \nu_k^{-1} \nu_k \left(\prod_{j \in J_k} A_j\right)^{h|B|} \nu_k^{-1} \nu_k = \nu_k^{-1} \left(\prod_{j \in J_k} A_j \nu_k^{-1}\right)^{h|B|} \nu_k
\]

\[
= \nu_k^{-1} \left(\prod_{j \in J_k} A_j^{d_j} \Phi^{-1}(\tau_k^j)\right)^{h|B|} \nu_k = \nu_k^{-1} \left(\prod_{j \in J_k} A_j\right)^{h|B|p_k} \nu_k
\]

\[
= \left(\prod_{j \in J_k} A_j \nu_k\right)^{h|B|p_k} = \left(\prod_{j \in J_k} A_j^{d_j} \Phi^{-1}(\tau_k^j)\right)^{h|B|p_k}
\]

\[
= \left(\prod_{j \in J_k} A_j\right)^{h|B|p_k p_k'},
\]

for all integer \(h\). In particular, for \(h = 1\) this implies that \(2r\) divides \(|B|p_k p_k' - |B|\). Since \(2r = |B|q\), we have that \(q\) divides \(p_k p_k' - 1\), for every \(k\); let us say that for every \(k, 1 \leq k \leq K\), there exists \(x_k \geq 1\) such that

\[
(24) \quad p_k p_k' - 1 = qx_k.
\]
By a similar argument as in the previous paragraph, we can show that

\[
(25) \quad \left(\prod_{j \in J_k} A_j \right)^{h|\tau_k|} = \left(\prod_{j \in J_k} A_j \right)^{h|\tau_k| p_k'_{j}}
\]

for all integer \(h \). For \(h = 1 \), this says that \(2r \) divides \(|\tau_k| p_k'_{k} - |\tau_k| \). Using (24) and that \(|B| = |\tau_k| y_k \), for some \(y_k \geq 1 \), we have that \(y_k \) divides \(x_k \), for every \(k \), let us say \(x_k = y_k z_k \); for some \(z_k \geq 1 \). Hence

\[
|\tau_k| p_k p_k'_{k} - |\tau_k| = |\tau_k| q y_k z_k = |B| q z_k = 2r z_k.
\]

Since \(r \) is even we have that \(|\tau_k| p_k p_k'_{k} \equiv |\tau_k| \Mod (4) \); this means that

\[
(26) \quad p_k'_{k} \sum_{j \in J_k} d_j \equiv |\tau_k| \Mod (4) \quad \text{and} \quad p_k \sum_{j \in J_k} e_j \equiv |\tau_k| \Mod (4).
\]

Clearly,

\[
(27) \quad \left(\sum_{j \in J_k} d_j \right) \left(\sum_{j \in J_k} e_j \right) \equiv |\tau_k|^2 \Mod (4).
\]

Using (26), (27) and that \(|\tau_k|^2 \equiv 0 \) or \(1 \) \Mod (4) we conclude that

\[
(28) \quad \sum_{j \in J_k} d_j \equiv \sum_{j \in J_k} e_j \Mod (4),
\]

for every \(k \), \(1 \leq k \leq K \). Moreover, if \(|\tau_k|^2 \equiv 0 \Mod (4) \), then

\[
(29) \quad \sum_{j \in J_k} d_j \equiv 0 \equiv \sum_{j \in J_k} e_j \Mod (4) \quad \text{or} \quad \sum_{j \in J_k} d_j \equiv 2 \equiv \sum_{j \in J_k} e_j \Mod (4),
\]

and if \(|\tau_k|^2 \equiv 1 \Mod (4) \), then

\[
(30) \quad \sum_{j \in J_k} d_j \equiv 1 \equiv \sum_{j \in J_k} e_j \Mod (4) \quad \text{or} \quad \sum_{j \in J_k} d_j \equiv 3 \equiv \sum_{j \in J_k} e_j \Mod (4).
\]

For \(h = 0, 1, 2 \) and \(3 \), we define

\[
K_h := \{ k \mid 1 \leq k \leq K \text{ and } |\tau_k|^2 \equiv h \Mod (4) \}.
\]

Then we can write

\[
\sum_{j=1}^{n} (e_j + d_j) = \sum_{j \notin J} (e_j + d_j) + \sum_{k \in K_0 \cup K_3} \sum_{j \in J_k} (e_j + d_j) + \sum_{k \in K_0 \cup K_2} \sum_{j \in J_k} (e_j + d_j).
\]

By (29), it is clear that

\[
\sum_{k \in K_0 \cup K_2} \sum_{j \in J_k} (e_j + d_j) \equiv 0 \Mod (4),
\]

while if \(k \in K_1 \cup K_3 \) then \(\sum_{j \in J_k} (e_j + d_j) \equiv 2 \Mod (4) \). Besides, if \(j \notin J \) then \(d_j \) and \(e_j \) are relatively prime to \(2r \) and it is easy to see that

\[
(31) \quad A_j = \sigma^{-1}_{i_j} \sigma_{i_j} A_j \sigma^{-1}_{i_j} \sigma_{i_j} = \sigma^{-1}_{i_j} A^d_{i_j} \sigma_{i_j} = (\sigma_{i_j} A_j \sigma_{i_j})^{d_j} = A^{d_j}_{i_j}.
\]
this implies that \(2r \) divides \(e_j d_j - 1 \), and since \(r \) is even we have \(e_j d_j \equiv 1 \) mod (4). Using that \(d_j \) and \(e_j \) are odd and the last fact we can prove that
\[
\text{(32)} \quad e_j + d_j \equiv 2 \text{ mod (4)},
\]
for every \(j \notin J \).

We saw that \(\text{card } J_k = |\tau_k| \), hence \(\sum_{k \in K_0 \cup K_2} \text{card } J_k \) is even. Since
\[
n = \text{card } J^c + \sum_{k \in K_1 \cup K_3} \text{card } J_k + \sum_{k \in K_0 \cup K_2} \text{card } J_k
\]
is even we have that \(a := \text{card } J^c + \sum_{k \in K_1 \cup K_3} \text{card } J_k \) is even. Hence
\[
\text{(33)} \quad \sum_{j=1}^{n} (e_j + d_j) \equiv 2a \equiv 0 \text{ mod (4)},
\]
and the result follows.

Proof of Theorem 2.16 Let \(t_h, t_1 \) in \(C \) that commute; it amounts to say that \(\gamma_{hl} := g_{hl}^{-1} t_h g_{hl} \) and \(\gamma_{th} := g_{th}^{-1} t_1 g_{th} \) are in \(S_{2n}^t \). Let \(\rho \in S_{2n}^t \) as in the statements (a) or (b). Let us remember from subsection 1.2, that \(q_{hl} = \rho(\gamma_{hl}) \), \(q_{th} = \rho(\gamma_{th}) \) and \(q_{hl} = \rho(\gamma_{hl}) \) and \(q_{th} = \rho(\gamma_{th}) \). We must see that \(q_{hl} = -1 = q_{th} \) and \(q_{hl}q_{th} = 1 \). The first conditions are trivially fulfilled. For the last one we consider two cases.

CASE 1: \(h = 1 \). Let \(\gamma_{1l}, \gamma_{1h} \) be as in (12) and (13), respectively.

(i) Assume that \(\rho = \chi_{r,\ldots,r} \otimes \mu \), with \(\mu = \epsilon \) or sgn. Since \(\rho(\pi) = -1 \) and \(\rho(\pi) = \omega^{n} \), with \(\omega = \exp\left(\frac{i\pi}{2}\right) \), we have that \(n \) must be odd. Then
\[
q_{1l}q_{1l} = (\chi_{r,\ldots,r} \otimes \mu)(\gamma_{1l}^2)(\gamma_{1l}^2) = (\chi_{r,\ldots,r} \otimes \mu)(\gamma_{1l})(\chi_{r,\ldots,r} \otimes \mu)(\gamma_{1l})
\]
\[
= \omega^n \sum_{j=1}^{n} e_j + d_j \mu(B') \mu(B) = (-1)^{\sum_{j=1}^{n} e_j + d_j} 1 = 1,
\]
by Lemma 2.17 and Lemma 2.18 (a).

(ii) Assume that \(r \) is even and \(\rho = \chi_{c,\ldots,c} \otimes \mu \), with \(c = \frac{x}{2} \) or \(\frac{3x}{2} \), and \(\mu = \epsilon \) or sgn. The condition \(\rho(\pi) = -1 \) implies that \(n \equiv 2 \) mod (4); in particular \(n \) is even. By Lemma 2.17 and Lemma 2.18 (b), we can say
\[
q_{1l}q_{1l} = (\chi_{c,\ldots,c} \otimes \mu)(\gamma_{1l}^2)(\gamma_{1l}^2) = (\chi_{c,\ldots,c} \otimes \mu)(\gamma_{1l})(\chi_{c,\ldots,c} \otimes \mu)(\gamma_{1l})
\]
\[
= \omega^n \sum_{j=1}^{n} e_j + d_j \mu(B') \mu(B) = (-1)^{\sum_{j=1}^{n} e_j + d_j} 1 = 1.
\]

CASE 2: \(h \neq 1 \). We call \(\tilde{\pi} := t_h \).

(i) Assume that \(\rho = \chi_{r,\ldots,r} \otimes \mu \), with \(\mu = \epsilon \) or sgn. Then there exists \(\tilde{c} \), with \(0 \leq \tilde{c} \leq 2r - 1 \), such that \(\chi_{\tilde{c},\ldots,\tilde{c}} \otimes \tilde{\mu} \in S_{2n}^t \) and
\[
\text{(34)} \quad M(C, \chi_{r,\ldots,r} \otimes \mu) = M(C, \chi_{\tilde{c},\ldots,\tilde{c}} \otimes \tilde{\mu}),
\]
where \(\tilde{\mu} = \epsilon \) or sgn, say \(\tilde{\mu} = \text{sgn} \). This implies that \(\tilde{\rho} := \chi_{\tilde{c},\ldots,\tilde{c}} \otimes \tilde{\mu} \) and \(\rho \) have the same image, see (3), it means that \(\langle \pm \omega^d \rangle = \langle \omega^d \rangle \) = \{1, -1\}. Since \(\omega = \exp\left(\frac{i\pi}{2}\right) \) it is clear that \(\tilde{c} = r \). Now, the result follows for \(\tilde{\rho} \) from the case (1)(i). The case \(\tilde{\mu} = \epsilon \) is similar.
(ii) Assume that r is even and $\rho = \chi_{c,...,c} \otimes \mu$, with $c = \frac{r}{2}$ or $\frac{3r}{2}$, and $\mu = \epsilon$ or sgn. Then there exists \tilde{c}, with $0 \leq \tilde{c} \leq 2r - 1$, such that

\begin{equation}
M(C, \chi_{c,...,c} \otimes \mu) = M(C, \chi_{\tilde{c},...,\tilde{c}} \otimes \tilde{\mu}),
\end{equation}

where $\tilde{\mu} = \epsilon$ or sgn, say $\tilde{\mu} = \text{sgn}$. This implies that $\tilde{\rho} := \chi_{\tilde{c},...,\tilde{c}} \otimes \tilde{\mu}$ and ρ have the same image, i.e. $\langle \pm \omega^c \rangle = \langle \omega^r \rangle = \{1, i, -1, -i\}$. Since $\omega = \exp(\frac{i\pi}{r})$ it is clear that $\tilde{c} = \frac{r}{2}$ or $\frac{3r}{2}$. Now, the result follows for $\tilde{\rho}$ from the case (1)(ii). The case $\tilde{\mu} = \epsilon$ is similar.

This concludes the proof. \qed

REFERENCES

[H1] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, math.QA/0402350v2; II: Classification, math.QA/0404008.

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA, UNIVERSIDAD NACIONAL DE CóRDOBA, CIEM - CONICET, (5000) CIUDAD UNIVERSITARIA, CóRDOBA, ARGENTINA
E-mail address: andrus@famaf.unc.edu.ar
E-mail address: fantino@famaf.unc.edu.ar